首页> 美国卫生研究院文献>Scientific Reports >Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling
【2h】

Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

机译:微结构物理学增强微通道流动沸腾中薄膜蒸发传热

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.
机译:近年来,通过实施表面微结构和纳米结构来增强微通道中两相流沸腾传热过程的性能已引起广泛关注。但是,根据测试条件和流体性质,所报告的结果从性能下降到性能改善的范围很广,而导致观察到的行为的物理机制尚无共识。这种知识上的差距是由于对与微通道流动沸腾过程中涉及的微尺度传热和传质事件相互作用的表面结构的物理学缺乏了解。在这里,使用一种新颖的测量技术,以前所未有的细节分析了表面结构中的传热和传质过程。当液体芯通过表面结构并蒸发时,测量局部热通量和变干时间尺度。决定性模型解释了控制织构表面传热的物理机制,该模型涉及三个关键参数:液膜芯吸进入表面结构的干燥时间尺度(τd),液膜的加热长度尺度(δH)和蒸发液膜(Ar)的面积分数。结果表明,该模型可准确预测两种流体FC-72和具有完全不同的芯吸特性的水在沸腾时表面结构(即微通道壁上制造的支柱)之间的最佳间距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号