首页> 外文学位 >Surface engineered click-in nanoparticles for energy storage applications.
【24h】

Surface engineered click-in nanoparticles for energy storage applications.

机译:表面设计的可点击式纳米颗粒,用于储能应用。

获取原文
获取原文并翻译 | 示例

摘要

High energy density, high power density energy storage methods are necessary in order to meet the growing energy demands within the fields of grid stabilizing, personal power, backup power, mobile power, and military applications. Dielectric capacitive storage provides the necessary power and life time properties, but falls short in gravimetric energy storage and thereby eliminates them for large scale applications. Two material properties define the energy density of a dielectric layer: the dielectric constant and the breakdown as derived from the definition of capacitance. Former research that tries to increase both dielectric constant and breakdown field through nanocomposites consisted of mixing high dielectric nanoparticles with known high breakdown polymers with the assumption that, although both the dielectric constant and breakdown field will reduce below the pure materials, there will be an overall increase in energy density. However the interface of the nanoparticle and polymer matrix creates a void which acts as a charge concentrator, greatly reducing the breakdown field. The presented research focuses on eliminating this void through thiol alkene click chemistry between the nanoparticle and the polymer matrix. By designing a thermally and electronically stable polymer that is cured through UV processing, functionalized high dielectric constant nanoparticles can be directly bonded into a high breakdown polymer matrix. The design of a high breakdown material requires the control of the structure and chemistry to increase cross-linking, crystallinity, dipole traps, and dipole interactions. Thiol alkene click chemistry, combined with high energy curing techniques (such as xenon flash curing), offers the control necessary to design a polymer to create a high breakdown dielectric. The work presented demonstrates the drastic improvement of energy storage capabilities of nanocomposite dielectrics through the engineering of the particle-polymer interface.
机译:为了满足电网稳定,个人电源,备用电源,移动电源和军事应用领域中不断增长的能源需求,必须采用高能量密度,高功率密度的能量存储方法。介电电容式存储提供了必要的功率和使用寿命特性,但在重力式能量存储方面却不足,因此在大型应用中将其消除了。两种材料特性定义了介电层的能量密度:介电常数和击穿强度(从电容定义中得出)。试图通过纳米复合材料同时提高介电常数和击穿场的研究包括将高介电纳米颗粒与已知的高击穿聚合物混合,并假设,尽管介电常数和击穿场均会降低至纯材料以下,但总体上增加能量密度。然而,纳米颗粒和聚合物基质的界面产生了空隙,该空隙充当了电荷集中器,大大减小了击穿场。提出的研究集中于通过纳米颗粒和聚合物基质之间的硫醇烯点击化学来消除该空隙。通过设计通过UV处理固化的热和电子稳定聚合物,可以将官能化的高介电常数纳米粒子直接结合到高击穿的聚合物基质中。高击穿材料的设计要求控制结构和化学性质,以增加交联,结晶度,偶极阱和偶极相互作用。硫醇烯烃点击化学与高能固化技术(例如氙气快速固化)相结合,可提供设计聚合物以产生高击穿电介质所需的控制。提出的工作表明,通过粒子-聚合物界面的工程设计,纳米复合电介质的能量存储能力得到了极大的提高。

著录项

  • 作者

    Riggs, Brian C.;

  • 作者单位

    Tulane University School of Science and Engineering.;

  • 授予单位 Tulane University School of Science and Engineering.;
  • 学科 Materials science.;Energy.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号