首页> 外文学位 >A study of surface plasmon-coupled emission from rhodamine 6G using picosecond pulses and coninuous wave light.
【24h】

A study of surface plasmon-coupled emission from rhodamine 6G using picosecond pulses and coninuous wave light.

机译:罗丹明6G的表面等离子体激元耦合发射的皮秒脉冲和连续波光研究。

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence measurements are used in life sciences to provide important information about biomolecules (fluorophores) such as structure, mobility, and conformational changes by detecting the target molecules on surfaces. Currently, fluorescence measurements are performed using free-space (FS) detection, which are mostly isotropic, resulting in detection of approximately 1% of the total emission. The emission process may be limited by the background fluorescence due to its isotropic nature and, photochemical destruction of the fluorophores.;Surface Plasmon-Coupled Emission (SPCE) is a fluorescence technique that has been recently introduced that increases the fluorescence yield. SPCE is based on the interaction of excited-state fluorophores with a nearby metal surface. The fluorophores above the metal surface can couple with the plasmon resonances in the metal, resulting in directional and wavelength-resolved emission. The coupled emission is characterized by a dependence of the emission wavelength on the emission angle. In addition, the emission is horizontally (p) polarized. An advantage of the SPCE over FS signal is the reduction of the background fluorescence signal, since only fluorophores close to the metal surface will couple to the surface plasmons.;Picosecond pulses were used to study the SPCE properties of Rhodamine 6G fluorophore on a thin silver film. It is expected that using pulsed laser sources can greatly enhance the SPCE signal over the FS signal. The SPCE signal is 3 times higher that the isotropic FS signal. Thus, SPCE technique under pulsed excitation promises to be an effective tool for fluorescence measurements in investigating the optical properties of biomolecules.
机译:生命科学中使用荧光测量来通过检测表面上的目标分子来提供有关生物分子(荧光团)的重要信息,例如结构,迁移率和构象变化。当前,使用自由空间(FS)检测(主要是各向同性)执行荧光测量,从而检测到总发射量的大约1%。发射过程可能由于其各向同性性质以及荧光团的光化学破坏而受到背景荧光的限制。表面等离激元耦合发射(SPCE)是最近引入的一种荧光技术,可以提高荧光产量。 SPCE基于激发态荧光团与附近金属表面的相互作用。金属表面上方的荧光团可与金属中的等离激元共振耦合,导致定向和波长分辨的发射。耦合发射的特征在于发射波长对发射角的依赖性。此外,发射是水平(p)极化的。 SPCE优于FS信号的一个优点是减少了背景荧光信号,因为只有靠近金属表面的荧光团才会耦合到表面等离子体激元。皮秒脉冲用于研究薄银上若丹明6G荧光团的SPCE特性。电影。期望使用脉冲激光源可以大大增强SPCE信号,而不是FS信号。 SPCE信号是各向同性FS信号的3倍。因此,脉冲激发下的SPCE技术有望成为研究生物分子光学性质的有效荧光测量工具。

著录项

  • 作者

    Watts, Shelly C.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Physics General.;Physics Optics.
  • 学位 M.S.
  • 年度 2009
  • 页码 63 p.
  • 总页数 63
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号