首页> 外文学位 >Elasticity of biopolymer networks.
【24h】

Elasticity of biopolymer networks.

机译:生物聚合物网络的弹性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a study of the elasticity of three very different cytoskeletal materials, microtubules (MTs), filamentous actin (F-actin) and vimentin, one of the intermediate filaments (IFs). Using bulk rheology, multiple particle tracking, confocal microscopy, and transmission electron microscopy (TEM), we study the microscopic origin of the elasticity of these cytoskeletal networks.;In Chapter 1, we briefly introduce the properties of the three components of cytoskeletal filaments as well as the rheology essential to provide the background and motivation of this thesis. In Chapter 2, we describe the materials and experimental techniques involved.;In Chapter 3, we study solutions of purified MTs, as well as networks permanently cross-linked with biotin-NeutrAvidin. We show that the mechanical properties of MT solutions cannot be explained by the non-interacting rigid rod model. Instead, they show behavior very similar to the permanently cross-linked networks, suggesting the presence of effective cross-linking even in pure MT solutions. We develop a simple model based on transient cross-linking interactions between MTs to interpret the rheological response. We also calculate a lower bound estimate of the strength of this interaction.;In Chapter 4, we investigate the mechanical response of the composite networks of F-actin and MTs. We find that even a small concentration of MTs leads to dramatic and qualitative changes in the elastic properties of F-actin networks. MTs provide a way to regulate the nonlinear stiffening response of F-actin. Theoretically this can be understood in terms of an inhomogeneity in the strain field of the gel. This finding is highly relevant for interpretation of the mechanical behavior of the intracellular cytoskeleton, in which a dilute network of MTs coexists with a denser meshwork of more flexible biopolymers such as F-actin.;In Chapter 5, we study the third and final filamentous protein of the cytoskeleton, intermediate filaments (IFs). We find that divalent ions act as cross- linkers in vimentin networks. We demonstrate that the linear and nonlinear elastic responses of vimentin IF networks at intermediate stress can be quantitatively explained by stretching the entropic fluctuations of single semiflexible filaments; at high stress, we propose that enthalpic stretching of the individual filaments contributes to the observed nonlinear response.
机译:本论文对三种非常不同的细胞骨架材料-微管(MTs),丝状肌动蛋白(F-actin)和波形蛋白(中间丝之一)的弹性进行了研究。使用本体流变学,多颗粒跟踪,共聚焦显微镜和透射电子显微镜(TEM),我们研究了这些细胞骨架网络弹性的微观起源。在第一章中,我们简要介绍了细胞骨架丝的三个组成部分的特性,分别为以及提供本论文的背景和动机所必需的流变学。在第二章中,我们描述了所涉及的材料和实验技术。在第三章中,我们研究了纯化MT的溶液以及与生物素-NeutrAvidin永久交联的网络。我们表明MT解决方案的机械性能不能用非相互作用的刚性杆模型来解释。相反,它们显示出与永久交联网络非常相似的行为,这表明即使在纯MT解决方案中也存在有效的交联。我们基于MT之间的瞬态交联相互作用开发了一个简单的模型来解释流变响应。我们还计算了这种相互作用的强度的下界估计值。在第4章中,我们研究了F-肌动蛋白和MT的复合网络的机械响应。我们发现即使浓度很小的MT也会导致F-肌动蛋白网络的弹性特性发生戏剧性和质变。 MT提供了一种调节F-肌动蛋白的非线性增强反应的方法。从理论上可以从凝胶应变场的不均匀性来理解。这一发现与解释细胞内细胞骨架的力学行为高度相关,在该机制中,MT的稀薄网络与更柔韧的生物聚合物(如F-肌动蛋白)的致密网状结构共存。在第5章中,我们研究了第三个也是最后一个丝状细胞骨架蛋白,中间丝(IFs)。我们发现二价离子在波形蛋白网络中充当交联剂。我们证明,波形蛋白IF网络在中间应力下的线性和非线性弹性响应可以通过拉伸单条半挠性细丝的熵波动来定量解释。在高应力下,我们建议单个细丝的焓拉伸有助于观察到的非线性响应。

著录项

  • 作者

    Lin, Yi-Chia.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Condensed Matter.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号