首页> 外文学位 >Metallic nanostructures for optoelectronic and photovoltaic applications.
【24h】

Metallic nanostructures for optoelectronic and photovoltaic applications.

机译:用于光电和光伏应用的金属纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

The optical properties of metallic nanostructures are of interest to scientists and engineers. They allow the manipulation of light on a microscopic level, which has applications in photonics, optoelectronics and energy conversion. In this dissertation, we investigate the surface plasmon resonances, near fields and scattering properties of these structures and their interaction with semiconductors.;The optical properties of metallic nanoparticles are analyzed by EM theory and finite element simulation. We perform experiments where the scattered fields of the nanoparticles are coupled to semiconductor photodiodes. From the results we study how the near fields and scattering properties can influence the optical absorption response spectrum in such devices. We find that the quasi-static behavior of the nanoparticles can explain the observed modulation in the absorption spectra. We also apply the same methods of simulation and experiment to Silicon-on-Insulator photodetectors. The coupling between the nanoparticles and waveguide modes in the silicon film leads to large increases in absorption, particularly in the infrared wavelengths, where silicon is a poor absorber. We find that we can engineer the absorption enhancement spectra by controlling the nanoparticle distribution.;Another application that we investigate is in UV multi-spectral imaging. We study dielectric overlayer transmission grating structures and exploit the surface plasmon and dielectric waveguide properties of our structures to engineer UV band reject filters. The exploitation of metallic nano-structures is necessary as traditional materials for resonating optical structures do not work well in the UV. Finally, we investigate metallic scattering backside reflectors for optimal light trapping in ultrathin film solar cells. Such solar cells suffer from poor quantum efficiency at certain wavelengths due to long photon absorption length. Therefore coupling of incident light into waveguide modes is an effective way to increase the quantum efficiency. By numerical analysis we study the performance of random vs periodic texturing of the backside reflector. The results are useful for designing optimal solar cells with very thin absorber layers.
机译:金属纳米结构的光学性质引起了科学家和工程师的兴趣。它们允许在微观水平上操纵光,这在光子学,光电学和能量转换中都有应用。本文研究了这些结构的表面等离子体共振,近场和散射特性以及它们与半导体的相互作用。;通过电磁理论和有限元模拟分析了金属纳米粒子的光学特性。我们进行的实验中,纳米粒子的散射场耦合到半导体光电二极管。从结果中,我们研究了近场和散射特性如何影响此类设备中的光吸收响应谱。我们发现,纳米粒子的准静态行为可以解释吸收光谱中观察到的调制。我们还将绝缘体上硅光电探测器应用相同的仿真和实验方法。纳米粒子和硅膜中的波导模式之间的耦合导致吸收的大幅增加,尤其是在红外波长(硅是不良吸收剂)的情况下。我们发现可以通过控制纳米粒子的分布来设计吸收增强光谱。;我们研究的另一个应用是在紫外多光谱成像中。我们研究介电层透射光栅结构,并利用我们结构的表面等离子体激元和介电波导特性来设计UV带阻滤光片。金属纳米结构的开发是必要的,因为用于使光学结构共振的传统材料在紫外线下不能很好地工作。最后,我们研究了金属散射的背面反射器,以在超薄膜太阳能电池中获得最佳的光捕获。由于长的光子吸收长度,这种太阳能电池在某些波长下具有较差的量子效率。因此,将入射光耦合到波导模式中是提高量子效率的有效方法。通过数值分析,我们研究了背面反射镜的随机纹理与周期性纹理的性能。该结果对于设计具有非常薄的吸收层的最佳太阳能电池很有用。

著录项

  • 作者

    Lim, Swee Hoe.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号