首页> 外文学位 >Optimal design of material microstructure for convective heat transfer in a solid-fluid mixture.
【24h】

Optimal design of material microstructure for convective heat transfer in a solid-fluid mixture.

机译:固液混合物中对流传热的材料微观结构的优化设计。

获取原文
获取原文并翻译 | 示例

摘要

Microstructural design for multi-functional composites of solid, fluid and heat transfer properties is newly presented in this work. Two major methods are utilized: topology optimization and the homogenization of porous media. In topology optimization, the geometry-control methods are extensively investigated using three types of design examples in solid mechanics. From the observations of the design results, it is concluded that the density filtering method yields acceptable design results in all design examples. For a clear segregation of material phases, the level-set based topology optimization is also examined. The level-set evolution via Hamilton-Jacobi equation may suffer from satisfying multiple constraints and the regularization for stable evolution plays an important role. Instead of Hamilton-Jacobi equation, the level-set evolution via the method of moving asymptotes is proposed to deal with multiple constraints. The constraints are smoothly satisfied by the proposed method of the level-set evolution via the MMA method. Numerical studies show that the move limit should be appropriately chosen for stable evolution of the level-set function in the proposed method.The topology design concept is applied to the optimal distribution of the solid or fluid volume in the fluid-flowing domain by employing the Brinkman-type governing equation. The inappropriate choices of the interpolation parameters for inverse permeability cause numerical instabilities such as design dependency and oscillation of the state variables. The existing interpolation schemes of material properties are investigated and interpolation of the inverse Darcy number is proposed. In the proposed method, the design dependency can be controlled by suppressing oscillation of velocity and pressure.The proposed and extensively investigated methodologies in topology optimization are applied to the microstructural design of multi-functional composites. To evaluate the fluid permeability and the effective heat dispersivity of microstructure, the homogenization of Stokes flow and convection-diffusion transport are presented. The objective formulation using the matrix norm and the inverse tensor is proposed. The existing results of negative Poisson's ratio design are successfully reproduced by the proposed objective formulations. The true orthotropic materials in elasticity are accomplished. In order to design multiple effective properties, several objective functions are adaptively scaled by the infimum of design sensitivity vectors and the objective values. As a design example for the multifunctional composite, the bone scaffold design is extended by employing the fluid permeability and the heat dispersivity. Consequently, the orthotropic multi-functional composites of solid, fluid, and heat transfer properties are newly accomplished in this work.
机译:这项工作中新提出了用于固体,流体和传热性能的多功能复合材料的微结构设计。使用了两种主要方法:拓扑优化和多孔介质均质化。在拓扑优化中,使用固体力学中的三种设计实例对几何控制方法进行了广泛研究。从设计结果的观察结果可以得出结论,密度滤波方法在所有设计实例中都能产生可接受的设计结果。为了清楚地分离材料相,还检查了基于水平集的拓扑优化。通过Hamilton-Jacobi方程进行的水平集演化可能会遇到多个约束,稳定演化的正则化起着重要作用。代替汉密尔顿-雅各比方程,提出了通过移动渐近线方法进行水平集演化以应对多种约束的方法。所提出的通过MMA方法进行的水平集演化方法可以平滑地满足这些约束。数值研究表明,在所提出的方法中,应适当选择移动极限,以使水平集函数稳定发展。拓扑设计的概念被应用于流体在流动域中的固体或流体体积的最佳分布。 Brinkman型控制方程。反渗透率的插值参数选择不当会导致数值不稳定性,例如设计依赖性和状态变量的振荡。研究了现有的材料特性插值方案,并提出了逆达西数的插值方法。在该方法中,可以通过抑制速度和压力的振荡来控制设计依赖性。拓扑优化中所提出的方法和广泛研究的方法被应用于多功能复合材料的微观结构设计中。为了评价微结构的流体渗透性和有效的热分散性,提出了斯托克斯流的均质性和对流扩散输运。提出了使用矩阵范数和逆张量的目标公式。提出的目标公式成功地再现了负泊松比设计的现有结果。真正的正交异性材料具有弹性。为了设计多个有效属性,通过设计敏感度矢量和目标值的最小值自适应地缩放几个目标函数。作为多功能复合材料的设计实例,通过使用流体渗透性和热分散性来扩展骨支架设计。因此,这项工作中新完成了固体,流体和传热特性的正交异性多功能复合材料。

著录项

  • 作者

    Seo, Jeong Hun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号