首页> 外文学位 >Thermal loading and modal frequency degeneracy in optical resonators for the Laser Interferometer Gravitational-wave Observatory (LIGO).
【24h】

Thermal loading and modal frequency degeneracy in optical resonators for the Laser Interferometer Gravitational-wave Observatory (LIGO).

机译:激光干涉仪引力波天文台(LIGO)的光学谐振器中的热负荷和模态频率简并性。

获取原文
获取原文并翻译 | 示例

摘要

High-power lasers increase gravitational-wave detection sensitivity in the shot-noise-limited range of interferometric systems such as LIGO, the Laser Interferometer Gravitational-wave Observatory. However, thermally induced distortion of mirrors from high circulating power degrades the performance of optical resonators. The maximum power resonating in cavities for the future upgrade to LIGO (Advanced LIGO) will reach 800 kW. At these power levels, low-loss optical coatings and substrates become susceptible to thermal distortions capable of degrading LIGO's performance. The ability to predict when thermal distortion will significantly impact a resonator's beam quality is critical for future generations of LIGO. This work presents experimental results of thermal loading in an optical resonator as well as simulations for predicting thermal performance of any interferometer configuration.;A Fabry-Perot ring cavity known as a modecleaner uses calibrated absorption loss to measure the effects of high circulating power similar to what will be observed in resonant systems for Advanced LIGO. An additional modecleaner with low absorption loss is also tested. Results show that power coupling from the fundamental mode to frequency-degenerate higher-order modes significantly degrades the resonant fundamental mode necessary for gravitational-wave detection. Models of thermal distortion including thermal lensing and thermoelastic surface deformation are used to simulate the behavior of various resonant interferometer configurations. Comparisons between modal frequency degeneracy data and simulations are found to be in reasonable agreement, allowing degeneracy predictions for LIGO resonators most susceptible to thermal loading. Finally, mitigation of thermal effects is discussed, as well as solutions for designing interferometers utilizing power levels greater than those of Advanced LIGO.
机译:大功率激光器在诸如LIGO(激光干涉仪引力波天文台)之类的干涉系统的散粒噪声限制范围内提高了重力波检测的灵敏度。但是,由于高循环功率而引起的热反射镜变形会降低光学谐振器的性能。将来升级为LIGO(高级LIGO)时,腔体内产生的最大共振功率将达到800 kW。在这些功率水平下,低损耗的光学镀膜和基材容易受到热变形的影响,从而降低LIGO的性能。预测何时热变形将严重影响谐振器光束质量的能力对于下一代LIGO至关重要。这项工作提供了光谐振器中热负载的实验结果以及用于预测任何干涉仪配置的热性能的仿真结果;被称为Modecleaner的Fabry-Perot环形腔使用校准的吸收损耗来测量高循环功率的影响,类似于Advanced LIGO在共振系统中会观察到什么。还测试了另一种吸收损耗低的模式清洁剂。结果表明,从基本模式到频率退化的高阶模式的功率耦合显着降低了引力波检测所需的谐振基本模式。使用包括热透镜和热弹性表面变形在内的热变形模型来模拟各种谐振干涉仪配置的行为。模态频率简并数据与仿真之间的比较被发现具有合理的一致性,从而允许对最易受热负荷影响的LIGO谐振器进行简并预测。最后,讨论了减轻热效应的方法,以及使用高于高级LIGO的功率水平设计干涉仪的解决方案。

著录项

  • 作者

    Bullington, Amber L.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号