首页> 外文学位 >Efficient simulation of electron trapping in laser and plasma Wakefield acceleration.
【24h】

Efficient simulation of electron trapping in laser and plasma Wakefield acceleration.

机译:激光和等离子体Wakefield加速中电子陷阱的高效仿真。

获取原文
获取原文并翻译 | 示例

摘要

Plasma based laser Wakefield accelerators (LWFA) have been a subject of interest in the plasma community for many years. In LWFA schemes the laser pulse must propagate several centimeters and maintain its coherence over this distance, which corresponds to many Rayleigh lengths. These Wakefields and their effect on the laser can be simulated in the quasistatic approximation. The 2D, cylindrically symmetric, quasistatic simulation code, WAKE is an efficient tool for the modeling of short-pulse laser propagation in under dense plasmas [P. Mora & T.M. Antonsen Phys. Plasmas 4, 1997]. The quasistatic approximation, which assumes that the driver and its wakefields are undisturbed during the transit time of plasma electrons, through the pulse, cannot, however, treat electron trapping and beam loading.;Here we modify WAKE to include the effects of electron trapping and beam loading by introducing a population of beam electrons. Background plasma electrons that are beginning to start their oscillation around the radial axis and have energy above some threshold are removed from the background plasma and promoted to "beam" electrons. The population of beam electrons which are no longer subject to the quasistatic approximation, are treated without approximation and provide their own electromagnetic field that acts upon the background plasma. The algorithm is benchmarked to OSIRIS (a standard particle in cell code) simulations which makes no quasistatic approximation. We also have done simulation and comparison of results for centimeter scale GeV electron accelerator experiments from LBNL. These modifications to WAKE provide a tool for simulating GeV laser or plasma wakefield acceleration on desktop computers.
机译:基于等离子体的激光韦克菲尔德加速器(LWFA)多年来一直是等离子体界关注的主题。在LWFA方案中,激光脉冲必须传播数厘米并在此距离上保持其相干性,该距离对应于许多瑞利长度。这些韦克场及其对激光器的影响可以通过准静态近似来模拟。二维圆柱对称准静态仿真代码WAKE是一种用于在密集等离子体下对短脉冲激光传播进行建模的有效工具[P.莫拉&T.M.安东森物理学等离子4,1997]。准静态近似假设驱动器及其唤醒场在等离子电子通过脉冲的传播时间内不受干扰,但是不能处理电子俘获和电子束负载。在这里,我们对WAKE进行修改以包括电子俘获和电子束的影响。通过引入束电子来填充束。背景等离子体电子开始开始围绕径向轴振荡,并且能量超过某个阈值,并从背景等离子体中移出,并被提升为“束”电子。不再经受准静态逼近的束电子群被处理而无需逼近,并提供了自己的作用于背景等离子体的电磁场。该算法以OSIRIS(单元代码中的标准粒子)模拟为基准,该模拟没有准静态近似。我们还对LBNL的厘米级GeV电子加速器实验进行了仿真和结果比较。对WAKE的这些修改提供了一种在台式计算机上模拟GeV激光或等离子体唤醒场加速的工具。

著录项

  • 作者

    Morshed, Sepehr.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.;Physics Fluid and Plasma.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号