首页> 外文学位 >Manipulation of surface chemistry and nanostructure in porous silicon-based chemical sensors.
【24h】

Manipulation of surface chemistry and nanostructure in porous silicon-based chemical sensors.

机译:在多孔硅基化学传感器中处理表面化学和纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

An ideal environmental sensor has zero baseline drift, a fast response time, is sensitive and selective to the analyte of interest, and has the ability to be miniaturized. Porous silicon is an attractive material for sensing applications due to its high surface area, readily modified surface chemistry, and optical signal transduction capability. This thesis describes the construction and chemical modification of porous silicon photonic crystals for use in chemical sensing. The specific aims of this work were to develop new methods to maximize sensor stability, remove background signal interference, and to induce chemical specificity into the sensor.;This thesis begins with an introduction on porous silicon preparation methods and its sensing mechanisms, as well as different chemicals and biomolecules that have been detected and their detection limit. We show a multitude of chemical modifications of the porous silicon surface that produce long-term stability and induce analyte class specificity to the sensor.;Next, a method to remove interfering effects of changing relative humidity from the response of porous silicon is developed. Two porous silicon films are separately etched and chemically modified into silicon, one on top of the other. The response of each film is measured simultaneously. Each film has a characteristic response towards water vapor. The effect of changing humidity can then be accounted for by calculating the weighted difference between the two layer responses. Thereby, building an internal reference into the sensor.;A second type of internal spectral reference to eliminate artifacts associated with varying angle of incidence of an optical probing detector relative to a one-dimensional photonic crystal sensor was developed. The chemically non responsive internal spectral reference was built into a photonic crystal sensor chemically modified to respond specifically to hydrofluoric acid.;Lastly, a simple and inexpensive method to etch patterns into porous silicon was developed. A masking layer was imprinted onto a silicon surface through microcontact printing, followed by an electrochemical etch. The imprinted residue reduces the etching rate of the bulk silicon below, while unmasked silicon etches normally. The resulting inhomogeneous etching rate of silicon transfers the pattern into the bulk silicon.
机译:理想的环境传感器的基线漂移为零,响应时间快,对目标分析物敏感且具有选择性,并且具有微型化的能力。多孔硅由于其高的表面积,易于修饰的表面化学性质和光信号转导能力而成为用于传感应用的有吸引力的材料。本文描述了用于化学传感的多孔硅光子晶体的结构和化学修饰。这项工作的具体目的是开发新的方法,以最大化传感器的稳定性,消除背景信号干扰,并在传感器中引入化学特异性。本论文首先介绍了多孔硅的制备方法及其传感机理,以及已检测到的不同化学药品和生物分子及其检测极限。我们展示了多孔硅表面的多种化学修饰,这些修饰产生了长期的稳定性并诱导了对传感器的分析物类别特异性。接下来,开发了一种从多孔硅的响应中消除相对湿度变化的干扰效应的方法。将两块多孔硅膜分别蚀刻并化学改性为硅,一层在另一层之上。同时测量每个膜的响应。每个膜对水蒸气都有一个特征响应。然后可以通过计算两层响应之间的加权差异来考虑湿度变化的影响。从而,将内部参考建立到传感器中。开发了第二种内部光谱参考,以消除与光学探测检测器相对于一维光子晶体传感器的入射角变化有关的伪影。化学无响应的内部光谱参考被内置到经过光化学修饰的光子晶体传感器中,以专门对氢氟酸做出响应。最后,开发了一种简单且廉价的方法来将图案蚀刻到多孔硅中。通过微接触印刷将掩模层压印在硅表面上,然后进行电化学蚀刻。印记的残留物降低了下面大块硅的蚀刻速率,而未掩膜的硅通常会蚀刻。所产生的硅不均匀蚀刻速率会将图案转移到块状硅中。

著录项

  • 作者

    Ruminski, Anne Marie.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Chemistry Analytical.;Chemistry Physical.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号