首页> 外文学位 >Surface and bulk passivation of multicrystalline silicon solar cells by silicon nitride (hydrogen) layer: Modeling and experiments.
【24h】

Surface and bulk passivation of multicrystalline silicon solar cells by silicon nitride (hydrogen) layer: Modeling and experiments.

机译:氮化硅(氢)层对多晶硅太阳能电池的表面和整体钝化:建模和实验。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this dissertation is to study passivation effects and mechanisms in Si solar cells, specifically, the surface and bulk passivation by hydrogen-rich PECVD silicon nitride (SiNx:H) antireflection layer on multi crystalline silicon (mc-Si) solar cells.;The passivation of silicon surface can be achieved in two ways: by field-effect passivation and/or by neutralization of interface states. In other words, the deposition should result in a high value of fixed charge, Q f and /or a low value of interface state density, D it. The surface recombination velocity can be described by Shockley-Read-Hall (SRH) statistics.;Current SRH formalisms have failed to explain the surface recombination mechanism in terms of injection level dependence as has been observed by lifetime measurements. Previous SRH modeling result shows that very high Q f (up to several 1012/cm2) on the surface of Si wafer, induced by SiNx:H layer, leads to no injection level dependence of surface recombination velocity (SRV), which is in contradiction to experimental results. An alternative approach is needed to address this problem.;A modified SRH formalism which includes the carrier recombination in the space-charge region was developed in this thesis to evaluate the recombination mechanism at SiNx:H-Si interface. Numerical modeling results indicate that, at low injection-levels, carrier recombination in the damaged layer is the dominant mechanism as compared to surface recombination. The majority of surface damage can be healed by rapid thermal annealing (RTA). Therefore, less minority-carrier recombination in the SCR is expected after the firing treatment of Si solar cells.;Based on the damaged layer and trapping/detrapping theory, a semi-quantitative hydrogen transportation model of H migration from SiNx:H layer into Si is presented. The model is verified by secondary ion mass spectrometry (SIMS) measurements of H in Si solar cells before and after annealing. The redistribution of H deep inside the cells can lead to excellent bulk passivation and high device performance.;Experimental results of the reproducibility of minority-carrier life measurement using QSSPCD technique indicate that wafer preparation requires a well-cleaned wafer and high quality surface passivation. In this study, a novel laboratory procedure for wafer preparation is proposed.;Theoretical and experimental studies on the influence of defect clusters on the performance of mc-Si solar cell have been performed. In a typical cell, the defect clusters produce an efficiency loss of 3 to 4 percent.
机译:本文的目的是研究硅太阳能电池中的钝化效应和钝化机理,特别是多晶硅(mc-Si)太阳能电池上富氢PECVD氮化硅(SiNx:H)减反射层的表面和整体钝化。硅表面的钝化可以通过两种方式实现:通过场效应钝化和/或通过界面态的中和。换句话说,沉积应导致高的固定电荷值Q f和/或低的界面态密度D it。表面重组速度可以通过Shockley-Read-Hall(SRH)统计数据来描述。当前的SRH形式学未能根据注入水平依赖性来解释表面重组机制,正如通过寿命测量所观察到的那样。先前的SRH建模结果表明,SiNx:H层引起的Si晶片表面很高的Q f(高达1012 / cm2),与表面复合速度(SRV)的注入水平无关,这是矛盾的实验结果。本论文开发了一种改进的SRH形式,包括在空间电荷区域中的载流子复合,以评估SiNx:H-Si界面的复合机理。数值模拟结果表明,在低注入水平下,与表面重组相比,受损层中的载流子重组是主要机理。可以通过快速热退火(RTA)修复大部分表面损伤。因此,在对硅太阳能电池进行焙烧处理后,可控硅中的少数载流子复合有望减少。;基于损伤层和俘获/俘获理论,H从SiNx:H层迁移到Si的半定量氢输运模型被表达。通过退火前后Si太阳能电池中H的二次离子质谱(SIMS)测量来验证该模型。 H在电池内部深处的重新分布可导致出色的整体钝化和较高的器件性能。使用QSSPCD技术测量少数载流子寿命的可重复性的实验结果表明,晶片制备需要良好清洁的晶片和高质量的表面钝化。在这项研究中,提出了一种新的制备晶片的实验室程序。;已经进行了关于缺陷簇对mc-Si太阳能电池性能影响的理论和实验研究。在典型的单元中,缺陷簇会产生3%至4%的效率损失。

著录项

  • 作者

    Li, Chuan.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Physics Solid State.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号