首页> 外文学位 >Fabrication of engineered composite semiconductor substrates for flexible solar cell applications.
【24h】

Fabrication of engineered composite semiconductor substrates for flexible solar cell applications.

机译:用于柔性太阳能电池应用的工程复合半导体衬底的制造。

获取原文
获取原文并翻译 | 示例

摘要

Thin film layer transfer provides a means to realize flexible solar cell devices and complex heterogeneous materials/device integration schemes. As an alternative to grind- or etch-back techniques, which result in the complete destruction of the starting substrate to achieve transfer, this study demonstrates an engineered composite substrate that is readily capable of device layer transfer to an alternative substrate while leaving the starting substrates intact for reuse. Furthermore, this composite substrate is not constrained to homoepitaxial deposition, making it applicable to a wide range of materials systems and device applications.;Fabrication of the composite substrate was achieved by incorporating the techniques of anodic etching, wafer bonding, and hydrogen exfoliation. Silicon handle wafers (p+ or p/p+) are subjected to anodic electrochemical etching in 25% HF electrolyte to create single layer (61% porosity) or double layer (40%/61% porosity) structures, which provide the means for mechanical transfer. The mechanical properties of the porous layers were found to decrease with increasing layer porosity. Upon annealing at typical device growth temperatures, the out of plane lattice parameter undergoes a shift from an initial tensile distortion to a compressive strain due to desorption of species from the porous Si lattice while the in-plane lattice parameter remains registered to the substrate. Additionally, the morphology of the porous silicon films evolves by pore sintering. After annealing, fracture occurs through the single porous silicon layer or at the interface between the porous double layers, enabling thin film layer transfer capability.;Indium phosphide wafers, which have been implanted with hydrogen ions, are then wafer bonded to the porous silicon handle wafers via silicon nitride interlayers. After a two-step annealing process, 0.6 mum layers of indium phosphide are transferred to the handle wafers through hydrogen exfoliation. After chemical mechanical polishing, the transferred InP layers have a surface roughness of 0.5 nm and high crystalline quality, with no detrimental impact due to the presence of the porous Si layer/s.;Metal-organic chemical vapor deposition on the composite substrate shows that residual ion implantation defects present in the InP template layer do not extend into growth layers, and the substrate maintains its high crystalline quality and mechanical integrity. Transfer of the epitaxial layers from the porous silicon handle wafer to an alternative substrate was achieved via fracture through the double porous layer interface.
机译:薄膜层转移提供了一种实现柔性太阳能电池设备和复杂的异构材料/设备集成方案的方法。作为研磨或回蚀技术的替代方法,该技术可完全破坏起始衬底以实现转移,这项研究表明,经过工程改造的复合衬底可以在不离开起始衬底的情况下轻松地将器件层转移至其他衬底完整,可重复使用。此外,该复合衬底不受限于同质外延沉积,使其适用于广泛的材料系统和器件应用。通过结合阳极蚀刻,晶片键合和氢剥落技术实现了复合衬底的制造。硅处理晶圆(p +或p / p +)在25%HF电解液中进行阳极电化学蚀刻,以创建单层(孔隙率61%)或双层结构(孔隙率40%/ 61%),这为机械转移提供了手段。发现多孔层的机械性能随着层孔隙率的增加而降低。在典型的器件生长温度下退火时,由于种从多孔硅晶格中脱附,平面外晶格参数经历了从初始拉伸变形到压缩应变的转变,而平面内晶格参数保持对准基板。另外,多孔硅膜的形态通过孔烧结而发展。退火后,破裂会通过单层多孔硅层或在多孔双层之间的界面处发生,从而能够实现薄膜层的转移能力。;将已注入氢离子的磷化铟晶片与晶片结合到多孔硅手柄上晶片通过氮化硅中间层。经过两步退火工艺后,通过氢剥离将0.6微米的磷化铟层转移到处理晶片上。经过化学机械抛光后,转移的InP层的表面粗糙度为0.5 nm,并且具有较高的结晶质量,而不会由于多孔Si层的存在而产生不利影响。在复合衬底上进行金属有机化学气相沉积表明: InP模板层中存在的残留离子注入缺陷不会扩展到生长层中,并且基板保持了其高结晶质量和机械完整性。通过穿过双多孔层界面的断裂,实现了外延层从多孔硅处理晶片到替代衬底的转移。

著录项

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号