首页> 外文学位 >Structural and functional perspectives of DNA directed self-assembly.
【24h】

Structural and functional perspectives of DNA directed self-assembly.

机译:DNA定向自组装的结构和功能观点。

获取原文
获取原文并翻译 | 示例

摘要

Well known as a genetic material, Deoxyribonucleic acid (DNA) also possesses unique properties that make it an appealing building block to create self-assembled nanostructures. Ease of synthesis, predictable molecular recognition of base pairing and available chemical modifications all add to its significance as a structural entity. Through rational designs, researchers have constructed a wide range of DNA nanoarchitectures of predefined periodicities and complexities. This dissertation focuses on the functionalization of self-assembling DNA nanostructures. A tweezer-like DNA nanodevice was constructed such that it was fully addressable and acted in a well-controlled fashion. The device was used to actuate covalent coupling of tethered molecules, thus opening up possibilities to achieve a molecular assembly line in the future.;To demonstrate the organizational power of DNA nanostructures for self-assembly of multi-component and multi-functional nanomaterials, aptamer ligands were adapted to create multiprotein nanoarrays with deliberately designed patterns. DNA scaffolds were also utilized to control the positioning of metallic nanoparticles to form discrete as well as periodic patterns. New strategies were developed to enhance the metal-DNA affinity and to improve the yield of the final assembly. Furthermore, gold nanoparticles of different sizes were used to control the self-assembly of DNA nanotubes into various configurations. Potentially, self-assembling protein nanoarrays could be used to probe spatially dependent protein-protein and protein-ligand interactions. Efficient and robust self-assembly of nanoparticles into controlled patterns is crucial for fundamental understanding of particle-particle interactions.
机译:脱氧核糖核酸(DNA)是众所周知的遗传物质,它还具有独特的特性,使其成为制造自组装纳米结构的引人注目的构件。易于合成,可预测的碱基配对分子识别和可用的化学修饰,均使其作为结构实体的意义进一步增强。通过合理的设计,研究人员构建了预定义周期性和复杂性的各种DNA纳米体系结构。本文主要研究自组装DNA纳米结构的功能化。构造了类似镊子的DNA纳米装置,使其可以完全寻址并以良好控制的方式起作用。该装置用于激活束缚分子的共价偶联,从而为将来实现分子组装线开辟了可能性。展示DNA纳米结构对多组分和多功能纳米材料,适体自组装的组织能力配体被改造为创建具有故意设计模式的多蛋白纳米阵列。 DNA支架也被用于控制金属纳米颗粒的定位,以形成离散的以及周期性的模式。已开发出新的策略来增强金属-DNA的亲和力并提高最终装配的产量。此外,使用了不同大小的金纳米颗粒来控制DNA纳米管的自组装成各种构型。潜在地,自组装蛋白质纳米阵列可用于探测空间依赖性蛋白质-蛋白质和蛋白质-配体相互作用。纳米粒子高效且强大的自组装成受控模式对于基本理解粒子间相互作用至关重要。

著录项

  • 作者

    Chhabra, Rahul.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Chemistry General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-17 11:38:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号