首页> 外文学位 >Realtime controller tuning for periodic disturbance rejection with application to active noise control.
【24h】

Realtime controller tuning for periodic disturbance rejection with application to active noise control.

机译:用于周期性干扰抑制的实时控制器调整,可应用于主动噪声控制。

获取原文
获取原文并翻译 | 示例

摘要

Incomplete knowledge of either plant or disturbance dynamics complicates the design of a feedback control system. Uncertainty in plant dynamics can cause feedback instabilities and should at least be considered in the context of stability robustness. Inaccurate controller design due to uncertainty in disturbance dynamics will not destabilize the system but may deteriorate feedback performance. In this dissertation, we develop and analyze methods that can be used tune feedback controllers to overcome these two difficulties.;Incomplete knowledge of disturbance dynamics, with exact knowledge of the plant, can be addressed by designing a family of controllers, identifying the disturbance model, and tuning the controller by switching from the current controller to the optimal controller in realtime. Care must be taken during tuning, especially if the disturbance model is changing in time. Rapidly switching between controllers during tuning can destabilize the feedback system even if each individual controller is by itself stabilizing. To address this issue, we present two different methods that guarantee stability during tuning. In addition to stability considerations, the question of complete regulation of time-varying disturbances remains.;When dealing with time-invariant deterministic disturbance models, the internal model principle dictates that a suitably replicated model of the disturbance dynamics be placed in the feedback path. Does this principle still hold if the disturbance model is time-varying? In this dissertation, it is proven that this principle holds for time-varying disturbance added to the input of the plant, but will not hold in general for disturbances added to the output of the plant. This is strikingly different from the classical time-invariant case, where the cancellation of input and output disturbances can be accomplished with the same time-invariant controller.;Finally, the situation where the disturbance and the plant models are both uncertain is considered, and a new algorithm is develop to cancel the uncertain disturbance while maintaining robust stability. The algorithm is developed by considering simultaneous perturbations to the plant and controller. The plant perturbation is used to represent the uncertainty in the plant model and the controller perturbation is identified with the algorithm to achieve the performance goals in the presence of the robustness constraints. A method of representing the plant uncertainty is presented that uses a nominal model, associated unstructured uncertainty, and weighting filters for the uncertainty. The nominal model is found to enhance the performance of the tuning algorithm, and a fixed-order weighting filter is found via convex optimization by posing and solving a spectral bounding problem.;It is shown how the framework of simultaneous plant and controller perturbations can be used to recast the realtime tuning of a feedback controller as a robust estimation problem. The formulation as an estimation problem allows tuning of the controller in realtime on the basis of closed loop system data. Furthermore, robust estimation is obtained by constraining the parameter estimates so that feedback stability will be maintained during controller tuning in the presence of plant uncertainty. The combination of realtime tuning and guaranteed stability robustness opens the possibility to perform Robust Estimation for Automatic Controller Tuning (REACT) to slowly varying disturbance spectra. The procedure is illustrated via the active noise cancellation of cooling fans, where narrow-band disturbances are suppressed.
机译:对工厂或扰动动力学的不完全了解使反馈控制系统的设计复杂化。植物动力学的不确定性可能导致反馈不稳定,至少应在稳定性鲁棒性的背景下加以考虑。由于干扰动态的不确定性而导致的不正确的控制器设计不会使系统不稳定,但可能会使反馈性能下降。在本文中,我们开发和分析了可用于调谐反馈控制器来克服这两个困难的方法。通过设计一个控制器家族,确定扰动模型,可以解决对扰动动力学的不完全了解以及对电厂的确切了解。 ,并通过从当前控制器实时切换到最佳控制器来进行调节。调整期间必须小心,尤其是当干扰模型随时间变化时。即使在调节过程中每个单独的控制器自身稳定下来,在调节过程中在控制器之间快速切换也会使反馈系统不稳定。为了解决此问题,我们提出了两种不同的方法来保证调整期间的稳定性。除了稳定性方面的考虑外,还存在对时变扰动进行完全调节的问题。当处理时变确定性扰动模型时,内部模型原理要求在反馈路径中放置一个适当复制的扰动动力学模型。如果干扰模型是时变的,这个原理是否仍然成立?在本文中,证明了该原理对于添加到设备输入的时变扰动是成立的,但对于添加到设备输出的扰动通常不成立。这与经典的时不变情况显着不同,在经典时不变情况下,可以使用相同的时不变控制器来完成输入和输出扰动的消除。最后,考虑了扰动和工厂模型都不确定的情况,并且开发了一种新的算法来消除不确定的干扰,同时保持鲁棒的稳定性。通过考虑对设备和控制器的同时扰动来开发算法。工厂扰动用于表示工厂模型中的不确定性,并且在存在鲁棒性约束的情况下,使用算法识别控制器扰动以实现性能目标。提出了一种表示工厂不确定性的方法,该方法使用名义模型,关联的非结构化不确定性以及针对不确定性的加权滤波器。找到标称模型以增强调谐算法的性能,并通过提出和解决频谱边界问题通过凸优化找到固定阶的加权滤波器。展示了如何同时控制工厂和控制器的摄动框架用于将反馈控制器的实时调整重铸为鲁棒的估计问题。作为估计问题的公式化允许基于闭环系统数据实时调整控制器。此外,通过约束参数估算值可以获得鲁棒的估算值,以便在存在工厂不确定性的情况下进行控制器调整时保持反馈稳定性。实时调整与保证的稳定性鲁棒性相结合,为对缓慢变化的干扰频谱执行自动控制器调整(REACT)的鲁棒估计提供了可能性。通过冷却风扇的主动噪声消除来说明该过程,在这种情况下,窄带干扰得到了抑制。

著录项

  • 作者

    Kinney, Charles E.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号