首页> 外文学位 >Contributions to the methodology of electrocardiographic imaging (ECGI) and application of ECGI to study mechanisms of atrial arrhythmia, post myocardial infarction electrophysiological substrate, and ventricular tachycardia in patients.
【24h】

Contributions to the methodology of electrocardiographic imaging (ECGI) and application of ECGI to study mechanisms of atrial arrhythmia, post myocardial infarction electrophysiological substrate, and ventricular tachycardia in patients.

机译:对心电图成像(ECGI)的方法和ECGI在研究房性心律失常,心肌梗死后电生理底物和患者室性心动过速的机制方面的贡献。

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiographic Imaging (ECGI) is a noninvasive imaging modality for cardiac electrophysiology and arrhythmia. ECGI reconstructs epicardial potentials, electrograms and isochrones from body-surface electrocardiograms combined with heart-torso geometry from computed tomography (CT). The application of a new meshless method, the Method of Fundamental Solutions (MFS) is introduced to ECGI with the following major advantages: (1) Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. (2) Elimination of mesh-induced artifacts. (3) Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool.;The current ECGI mode of operation is offline with generation of epicardial potential maps delayed to data acquisition. A real time ECGI procedure is proposed, by which the epicardial potentials can be reconstructed while the body surface potential data are acquired ( 1msec/frame) during a clinical procedure. This development enables real-time monitoring, diagnosis, and interactive guidance of intervention for arrhythmia therapy.;ECGI is applied to map noninvasively the electrophysiological substrate in eight post-MI patients during sinus rhythm (SR). Contrast-enhanced MRI (ceMRI) is conducted to determine anatomical scar. ECGI imaged regions of electrical scar corresponded closely in location, extent, and morphology to the anatomical scars. In three patients, late diastolic potentials are imaged in the scar epicardial border zone during SR. Scar-related ventricular tachycardia (VT) in two patients are imaged, showing the VT activation sequence in relation to the abnormal electrophysiological substrate. ECGI imaging the substrate in a beat-by-beat fashion could potentially help in noninvasive risk stratification for post-MI arrhythmias and facilitate substrate-based catheter ablation of these arrhythmias.;ECGI is applied to eleven consecutive patients referred for VT catheter ablation procedure. ECGI is performed either before (8 patients) or during (3 patients) the ablation procedure. Blinded ECGI and invasive electrophysiology (EP) study results are compared. Over a wide range of VT types and locations, ECGI results are consistent with EP data regarding localization of the arrhythmia origin (including myocardial depth) and mechanism (focal, reentrant, fascicular). ECGI also provides mechanistic electrophysiological insights, relating arrhythmia patterns to the myocardial substrate. The study shows ECGI has unique potential clinical advantages, especially for hemodynamically intolerant VT or VT that is difficult to induce. Because it provides local cardiac information, ECGI may aid in better understanding of mechanisms of ventricular arrhythmia. Further prospective trials of ECGI with clinical endpoints are warranted.;Many mechanisms for the initiation and perpetuation of atrial fibrillation (AF) have been demonstrated over the last several decades. The tools to study these mechanisms in humans have limitations, the most common being invasiveness of a mapping procedure. In this paper, we present simultaneous noninvasive biatrial epicardial activation sequences of AF in humans, obtained using the Electrocardiographic Imaging (ECGI) system, and analyzed in terms of mechanisms and complexity of activation patterns. We performed ECGI in 36 patients with a diagnosis of AF. To determine ECGI atrial accuracy, atrial pacing from different sites was performed in six patients (37 pacing events), and ECGI was compared to registered CARTO images. Then, ECGI was performed on all 36 patients during AF and ECGI epicardial maps were analyzed for mechanisms and complexity. ECGI noninvasively imaged the low-amplitude signals of AF in a wide range of patients (97% procedural success). The spatial accuracy in determining initiation sites as simulated by atrial pacing was ∼ 6mm. ECGI imaged many activation patterns of AF, most commonly multiple wavelets (92%), with pulmonary vein (69%) and non-pulmonary vein (62%) trigger sites. Rotor activity was seen rarely (15%). AF complexity increased with longer clinical history of AF, though the degree of complexity of nonparoxysmal AF varied and overlapped. ECGI offers a way to identify unique epicardial activation patterns of AF in a patient-specific manner. The results are consistent with contemporary animal models of AF mechanisms and highlight the coexistence of a variety of mechanisms among patients.
机译:心电图成像(ECGI)是一种用于心脏电生理和心律不齐的非侵入性成像方式。 ECGI从体表心电图结合计算机断层扫描(CT)的心脏躯干几何形状重建心外膜电位,电描记图和等时线。 ECGI引入了一种新的无网格方法的应用,即基本解法(MFS),它具有以下主要优点:(1)消除了网格划分和手动网格优化过程,从而增强了自动化并加快了ECGI程序。 (2)消除网格引起的伪像。 (3)更简单的实现。 MFS的这些特性增强了ECGI作为临床诊断工具的实际应用。当前的ECGI操作模式是离线的,心外膜电位图的生成延迟了数据采集。提出了一种实时ECGI程序,通过该程序可以在临床过程中在获取体表电位数据(<1毫秒/帧)的同时重建心外膜电位。这种发展使得对心律失常治疗的干预能够进行实时监测,诊断和交互式指导。ECGI用于在窦性心律(SR)期间无创地绘制8例MI后患者的电生理底物。进行对比增强MRI(ceMRI)以确定解剖疤痕。 ECGI成像的电疤痕区域在位置,范围和形态上与解剖疤痕紧密对应。在三例患者中,在SR期间在疤痕心外膜边界区成像了晚期舒张电位。对两名患者的疤痕相关性室性心动过速(VT)进行了成像,显示了与异常电生理基质有关的VT激活序列。 ECGI逐次心跳对底物成像可能潜在地有助于MI后心律失常的无创危险分层,并促进这些心律失常的基于底物的导管消融。; ECGI适用于11例接受VT导管消融手术的连续患者。在消融手术之前(8例)或期间(3例)进行ECGI。比较了盲人ECGI和侵入性电生理(EP)的研究结果。在广泛的VT类型和位置上,ECGI结果与关于心律失常起源(包括心肌深度)和机制(局灶性,折返性,束状性)的EP数据一致。 ECGI还提供了机械心电生理学见解,将心律失常模式与心肌基质相关联。研究表明,ECGI具有独特的潜在临床优势,尤其是对于血流动力学耐受性VT或难以诱导的VT。由于ECGI可提供局部心脏信息,因此可能有助于更好地了解室性心律失常的机制。有必要对具有临床终点的ECGI进行进一步的前瞻性试验。在过去的几十年中,已经证实了许多引发和延续心房颤动(AF)的机制。在人类中研究这些机制的工具有局限性,最常见的是映射程序的侵入性。在本文中,我们介绍了使用心电图成像(ECGI)系统获得的人类同时发生的AF的无创性二尖瓣心外膜激活序列,并就激活模式的机制和复杂性进行了分析。我们对36例诊断为AF的患者进行了ECGI。为了确定ECGI的心房准确性,对6位患者进行了不同部位的心房起搏(37起搏事件),并将ECGI与已注册的CARTO图像进行了比较。然后,在AF期间对所有36例患者进行了ECGI,并分析了ECGI心外膜图的机制和复杂性。 ECGI在广泛的患者中对AF的低振幅信号进行了无创成像(手术成功率达97%)。通过心房起搏模拟确定起始部位的空间精度约为6mm。 ECGI对AF的许多激活模式进行了成像,最常见的是多个小波(92%),肺静脉(69%)和非肺静脉(62%)触发部位。很少见到转子活动(15%)。尽管非阵发性AF的复杂程度不同且重叠,但随着AF临床病程的延长,AF的复杂性增加。 ECGI提供了一种以患者特定方式识别AF的独特心外膜激活模式的方法。结果与AF机制的现代动物模型一致,并突出了患者中多种机制的共存。

著录项

  • 作者

    Wang, Yong.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

  • 入库时间 2022-08-17 11:38:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号