首页> 外文学位 >Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation.
【24h】

Development of a snubber type magnetorheological fluid elastomeric lag damper for helicopter stability augmentation.

机译:开发用于直升机稳定性增强的缓冲型磁流变流体弹性体滞后阻尼器。

获取原文
获取原文并翻译 | 示例

摘要

Most advanced helicopter rotors are typically fitted with lag dampers, such as elastomeric or hybrid fluid-elastomeric (FE) lag dampers, which have lower parts counts, are lighter in weight, easier to maintain, and more reliable than conventional hydraulic dampers. However, the damping and stiffness properties of elastomeric and fluid elastomeric lag dampers are non-linear functions of lag/rev frequency, dynamic lag amplitude, and operating temperature. It has been shown that elastomeric damping and stiffness levels diminish markedly as amplitude of damper motion increases. Further, passive dampers tend to present severe damping losses as damper operating temperature increases either due to in-service self-heating or hot atmospheric conditions. Magnetorheological (MR) dampers have also been considered for application to helicopter rotor lag dampers to mitigate amplitude and frequency dependent damping behaviors. MR dampers present a controllable damping with little or no stiffness. Conventional MR dampers are similar in configuration to linear stroke hydraulic type dampers, which are heavier, occupy a larger space envelope, and are unidirectional. Hydraulic type dampers require dynamic seal to prevent leakage, and consequently, frequent inspections and maintenance are necessary to ensure the reliability of these dampers. Thus, to evaluate the potential of combining the simplicity and reliability of FE and smart MR technologies in augmenting helicopter lag mode stability, an adaptive magnetorheological fluid-elastomeric (MRFE) lag damper is developed in this thesis as a retrofit to an actual fluid-elastomeric (FE) lag damper. Consistent with the loading condition of a helicopter rotor system, single frequency (lag/rev) and dual frequency (lag/rev at 1/rev) sinusoidal loading were applied to the MRFE damper at varying temperature conditions. The complex modulus method was employed to linearly characterize and compare the performance of the MRFE damper with the baseline FE damper performance. Based on experimental measurements, it is shown in the research that at all test temperatures, a significant damping control range, extending beyond the baseline FE damper, can be provided by the MRFE damper with the application of varying magnetic fields. This controllable damping range can be programmed to potentially provide the required damping augmentation as a function of different flight conditions. The added benefits of employing smart MR fluids in MRFE lag dampers are to produce adequate damping at critical flight conditions while concurrently reducing periodic hub loads at other flight conditions and to compensate damping losses associated with temperature.;The other main objective of the present research is to develop and formulate a comprehensive analytical model that can accurately describe the non-linear hysteretic behavior that is demonstrated by the MRFE lag damper. Thus, a hydromechanical model, which can delineate the physical flow motion of the system and accurately describe the non-linear hysteretic behavior of the MRFE damper is proposed. The hydromechanical model explored in this study is a design-based model which describes the damper system with a series of lumped hydraulic, mechanical and magnetorheological components. The model employs physical parameters such as inertia, damping, yield force and compliances that are dependent on damper geometry and material properties of components and which can potentially be approximated a priori. Further, temperature variation will mainly cause material properties to change. Once model parameters have been established, the model is shown to simulate accurately the measured hysteretic force-displacement history under single and dual frequency excitations, and varying temperatures.
机译:大多数先进的直升飞机旋翼通常都安装有滞后阻尼器,例如弹性体或混合流体-弹性(FE)滞后阻尼器,它们的零件数量更少,重量更轻,易于维护并且比传统的液压阻尼器更可靠。但是,弹性体和流体弹性体滞后阻尼器的阻尼和刚度特性是滞后/转速,动态滞后幅度和工作温度的非线性函数。已经表明,随着阻尼器运动幅度的增加,弹性体的阻尼和刚度水平显着降低。此外,由于阻尼器工作温度由于使用中的自加热或炎热的大气条件而升高,因此被动阻尼器往往会呈现严重的阻尼损耗。还考虑将磁流变(MR)阻尼器应用于直升机旋翼滞后阻尼器,以减轻幅度和频率相关的阻尼行为。 MR阻尼器具有可控的阻尼,几乎没有或没有刚度。常规的MR阻尼器在构造上与线性冲程液压型阻尼器类似,后者较重,占据较大的空间范围并且是单向的。液压型减震器需要动态密封以防止泄漏,因此,必须进行频繁的检查和维护以确保这些减震器的可靠性。因此,为了评估将有限元和智能MR技术的简单性和可靠性相结合来增强直升机滞后模式稳定性的潜力,本论文开发了一种自适应磁流变流体弹性(MRFE)滞后阻尼器,作为对实际流体弹性的改进。 (FE)滞后阻尼器。与直升飞机旋翼系统的负载条件一致,在变化的温度条件下,对MRFE阻尼器施加了单频(滞后/转)和双频(1 /转时的滞后/转)正弦负载。复数模量法用于线性表征和比较MRFE阻尼器的性能与基线FE阻尼器的性能。基于实验测量,研究表明,在所有测试温度下,MRFE阻尼器可通过施加变化的磁场来提供超出基线FE阻尼器的有效阻尼控制范围。可以对这个可控制的阻尼范围进行编程,以根据不同的飞行条件潜在地提供所需的阻尼增强。在MRFE滞后阻尼器中使用智能MR流体的附加好处是在关键飞行条件下产生足够的阻尼,同时在其他飞行条件下减少周期性的轮毂负载并补偿与温度相关的阻尼损失。本研究的另一个主要目标是开发并制定一个综合分析模型,该模型可以准确描述MRFE滞后阻尼器演示的非线性滞后行为。因此,提出了一种流体力学模型,该模型可以描述系统的物理流动运动并准确描述MRFE阻尼器的非线性滞后行为。本研究中探讨的流体力学模型是一种基于设计的模型,该模型描述了阻尼器系统,该系统具有一系列集总的液压,机械和磁流变组件。该模型采用了物理参数,例如惯性,阻尼,屈服力和柔度,这些参数取决于阻尼器的几何形状和部件的材料特性,并且可能会先验地近似。此外,温度变化将主要导致材料性能改变。一旦建立了模型参数,就会显示出该模型可以精确模拟在单频和双频激励下以及变化的温度下测得的滞后力-位移历史。

著录项

  • 作者

    Ngatu, Grum T.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 302 p.
  • 总页数 302
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:38:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号