首页> 外文学位 >The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers.
【24h】

The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers.

机译:粘附强度在可生物降解聚合物上人间充质干细胞成骨细胞分化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function.;We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation.;Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes in focal adhesion number. Differentiation studies demonstrated that both constitutively active RhoA and mutants of FAK increase osteoblastic activity, while both dominant negative RhoA cells and hMSC treated with Y27632 exhibited a decrease in osteoblastic markers. Manipulating FAK or RhoA in hMSC resulted in greater modulations in osteogenesis on PLGA previously demonstrating maximal T50. This suggests that hMSC differentiation on polymers exhibiting high adhesion strength depends on FAK and RhoA signaling.
机译:人间充质干细胞(hMSC)是促进可生物降解的聚合物支架上骨骼生长的有前途的候选者,然而,关于早期hMSC与聚合物的相互作用知之甚少。粘附是高度动态的,在粘附增强期间,许多蛋白质形成粘附斑块,将细胞的细胞骨架与细胞外环境联系起来。已知这些蛋白质会影响细胞功能,但在hMSC分化中的作用尚不清楚。粘附斑块与粘附力有关,但至今尚未描述或证明hMSC对聚己内酯(PCL),聚丙交酯-乙交酯(PLGA)或藻酸盐的分离力会影响下游功能。 PCL,PLGA和藻酸盐显示出不同的粘合强度(tau50),这是通过流体剪切和旋转盘系统测定的,其中PLGA展示出最大的tau50。表征这些表面的弹性模量和疏水性,并与tau50呈正相关,与最佳值呈正相关。 hMSC的附着研究表明,粘附平台的时间跨度与细胞系和表面无关,但是形态和粘着斑表达随聚合物类型而变化。 hMSC在PLGA和PCL上的分化研究表明,分化标记(碱性磷酸酶活性和矿物质含量)与聚合物组内的tau50之间存在很强的联系,但在tau50与聚合物组之间的分化之间却发现了不良关联,这表明其他聚合物特性可能随后,我们研究了粘着斑激酶(FAK)和Rho-GTPase(RhoA)在铺板到PLGA上对hMSC粘附和分化的作用。用FAK和RhoA cDNA的突变构建体逆转录转导hMSC。或者,用Rho激酶抑制剂Y27632处理hMSC。用突变的RhoA或FAK构建体转导的两种细胞,或用Y27632处理的细胞均显示异常的细胞形态和粘着斑数目的变化。分化研究表明,组成型活性RhoA和FAK突变体均增加成骨细胞活性,而显性阴性RhoA细胞和Y27632处理的hMSC均显示成骨细胞标记物减少。在hMSC中操纵FAK或RhoA会导致PLGA的成骨作用发生更大的调节,先前显示出最大的T50。这表明hMSC在表现出高粘附强度的聚合物上的分化取决于FAK和RhoA信号传导。

著录项

  • 作者

    Krizan, Sylva Jana.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biology Cell.;Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;生物医学工程;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号