首页> 外文学位 >Polymeric microfluidic devices for bioanalysis.
【24h】

Polymeric microfluidic devices for bioanalysis.

机译:用于生物分析的聚合物微流控设备。

获取原文
获取原文并翻译 | 示例

摘要

Polymeric microchips have received increasing attention in chemical analysis because polymers have attractive properties, such as low cost, ease of fabrication, biocompatibility and high flexibility. However, commercial polymers usually exhibit analyte adsorption on their surfaces, which can interfere with microfluidic transport in, for example, chemical separations such as chromatography or electrophoresis. Usually, surface modification is required to eliminate this problem. To perform stable and durable surface modification, a new polymer, poly(methyl methacrylate-co-glycidyl methacrylate) (PGMAMMA) was prepared for microchip fabrication, which provides epoxy groups on the surface. Whole surface atom transfer radical polymerization (ATRP) and in-channel ATRP approaches were employed to create uniform and dense poly(ethylene glycol) (PEG)-functionalized polymer brush channel surfaces for capillary electrophoresis (CE) separation of biomolecules, such as peptides and proteins. In addition, a novel microchip material was developed for bioanalysis, I which does not require surface modification, made from a PEG-functionalized copolymer. The fabrication is easy and fast, and the bonding is strong. Microchips fabricated from this material have been applied for CE separation of small molecules, peptides, proteins and enantiomers.;Electric field gradient focusing (EFGF) is an attractive technique, which depends on an electric field gradient and a counter-flow to focus, concentrate and separate charged analytes, such as peptides and proteins. I used the PEG-functionalized copolymer to fabricate EFGF substrates. The separation channel was formed in an ionically conductive and protein resistant PEG-functionalized hydrogel, which was cast in a changing cross-sectional cavity in the plastic substrate. The hydrogel shape was designed to create linear or non-linear gradients. These EFGF devices were successfully used for protein focusing, and their performance was optimized. Use of buffers containing small electrolyte ions promoted rapid ion transport in the hydrogel for achieving the designed gradients. A PEG-functionalized monolith was incorporated in the EFGF separation channel to reduce dispersion and improve focusing performance. Improvement in peak capacity was proposed using a bilinear EFGF device. Protein concentration exceeding 10,000-fold was demonstrated using such devices.
机译:聚合物微芯片在化学分析中受到越来越多的关注,因为聚合物具有吸引人的特性,例如低成本,易于制造,生物相容性和高柔韧性。但是,市售聚合物通常在其表面上表现出分析物吸附,这可能会干扰微流体的运输,例如化学分离(例如色谱法或电泳)。通常,需要进行表面改性以消除此问题。为了进行稳定和持久的表面改性,制备了一种新的聚合物,聚(甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚)(PGMAMMA)用于微芯片制造,该聚合物在表面上提供了环氧基。采用全表面原子转移自由基聚合(ATRP)和通道内ATRP方法来创建均匀且致密的聚(乙二醇)(PEG)-官能化的聚合物刷通道表面,以用于生物分子(如多肽和多肽)的毛细管电泳(CE)分离。蛋白质。此外,还开发了一种新型的微芯片材料,用于生物分析,该材料不需要进行表面修饰,由PEG官能化的共聚物制成。制造容易且快速,并且结合牢固。用这种材料制成的微芯片已用于小分子,肽,蛋白质和对映异构体的CE分离。电场梯度聚焦(EFGF)是一种有吸引力的技术,它依赖于电场梯度和逆流来聚焦,浓缩以及分离带电的分析物,例如肽和蛋白质。我使用了PEG官能化的共聚物来制造EFGF基质。分离通道是在具有离子导电性和抗蛋白质作用的PEG官能化水凝胶中形成的,该凝胶浇铸在塑料基材中不断变化的横截面腔中。设计水凝胶形状以产生线性或非线性梯度。这些EFGF设备已成功用于蛋白质聚焦,并对其性能进行了优化。使用含有少量电解质离子的缓冲液可促进水凝胶中离子的快速转运,以实现设计的梯度。在EFGF分离通道中加入了PEG官能化的整体材料,以减少分散并提高聚焦性能。提出使用双线性EFGF装置提高峰容量。使用这种装置证明了蛋白质浓度超过10,000倍。

著录项

  • 作者

    Sun, Xuefei.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-17 11:38:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号