首页> 外文学位 >Periodic polymer photonic bandgap structures for on-chip optical cavities.
【24h】

Periodic polymer photonic bandgap structures for on-chip optical cavities.

机译:用于片上光腔的周期性聚合物光子带隙结构。

获取原文
获取原文并翻译 | 示例

摘要

Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules.;In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.
机译:集成的片上光学平台可在高速全光或电光交换,用于通信的宽范围多波长片上激光发射以及片上实验室光学传感等应用中实现高性能。具有高品质因数的集成光学谐振器是这些应用中的基本组件。周期性光子结构(光子晶体)表现出光子带隙,该带隙可以用于控制光子,其方式类似于控制半导体电路中的电子。这使得可以创建具有根本上改善的光学性能的结构。与硅相比,聚合物提供了一种潜在的廉价材料平台,该材料平台在低温下易于制造,并且在掺杂纳米晶体和其他分子时具有广泛的材料特性。;在这项研究工作中,人们提出并研究了几种聚合物周期性光子结构来改善光学限制和光学传感。我们开发了一种用于计算光子晶体平板(PhCS)腔质量因数的快速数值方法。该计算通过2D-FDTD方法执行,然后进行腔表面能量辐射损失的后处理。与其他已发布的方法相比,可以节省计算时间并显示出良好的准确性。此外,我们提出了一种插槽PhCS的新概念,与传统PhCS相比,该技术将能量密度提高了20倍。它结合了缝隙波导和光子晶体的优点,可以将低折射率材料中的高能量密度定位。此特性可以增加光与嵌入有纳米粒子(例如量子点)的材料之间的相互作用,以进行有源器件开发。我们还展示了基于一维波导分布式布拉格反射器的宽范围带隙,该反射器与光波导具有高耦合性,从而使其能够轻松与芯片上的其他光学组件集成在一起。提出了一种柔性聚合物(SU8)光栅波导作为力传感器。所提出的传感器可以通过其频谱偏移来监视nN个范围力。最后,通过优化旋涂和紫外线照射,证明了量子点掺杂的SU8聚合物结构。具有高发射光谱的清晰图案证明了该制造工艺在光学放大和激光发射中的兼容性。

著录项

  • 作者

    Liu, Tao.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号