首页> 外文学位 >High Pressure Isotropic Compression and Grain Crushing of Coarse Granular Materials
【24h】

High Pressure Isotropic Compression and Grain Crushing of Coarse Granular Materials

机译:粗粒材料的高压各向同性压缩和颗粒破碎

获取原文
获取原文并翻译 | 示例

摘要

The effect of grain crushing and grain size on the evolution of water retention curve is investigated based on the framework of Unsaturated Breakage Mechanics (UBM) (Buscarnera & Einav, 2012). The previous study by Gao et al. (2016) have been complemented by additional compression and soil water retention data on two types of granular soils with coarser and finer initial gradings than the ones presented in Gao et al. (2016). The model satisfactorily captures the co-evolution of suction air-entry value (sAEV) and the degree of grain breakage during compression. In addition, this study revealed that the effect of grain shape and pre-yielding void collapse are necessary components for future enhancement of the breakage mechanics model.;The compressive and breakage response of coarse granular materials are further investigated using the High Pressure Isotropic Compression (HPIC) device (Mun & McCartney., 2017). This thesis introduces several troubleshooting attempts of the HPIC device and the developed protocols to conduct high-pressure crushing tests. Coarse quartz sand and crushed shale sand are subjected to the high pressure isotropic compression test under dry and saturated states. Differences between the two materials in the compression curve are observed and the possible reasons are discussed. The compression tests are stopped at various stress levels to allow for inspections on the grain size distribution (GSD). Based on these measures, the degree of grain breakage is quantified via Einav's breakage index (Einav, 2007). A clear increase on grain breakage at elevated stress states and the evolution towards an ultimate fractal state is clearly observed. The obtained results are interpreted using a new 1D breakage model to serve as the basis of the next-generation breakage mechanics models.
机译:基于不饱和破损力学(UBM)的框架,研究了晶粒破碎和晶粒尺寸对保水曲线演变的影响(Buscarnera&Einav,2012)。高等人的先前研究。 (2016)补充了两种类型的粒状土壤的压缩和土壤保水数据,这些土壤的初始等级比Gao等人提出的等级高。 (2016)。该模型可以令人满意地捕获吸气入口值(sAEV)和压缩过程中颗粒破碎程度的共同演化。此外,这项研究还表明,晶粒形状和预屈服的空洞塌陷的影响是未来增强断裂力学模型的必要组成部分;;使用高压各向同性压缩法()进一步研究了粗粒状材料的压缩和断裂响应( HPIC)设备(Mun&McCartney。,2017)。本文介绍了HPIC设备的几种故障排除尝试以及开发的进行高压破碎测试的协议。粗石英砂和破碎的页岩砂在干燥和饱和状态下经受高压各向同性压缩试验。观察到两种材料在压缩曲线上的差异,并讨论了可能的原因。在各种应力​​水平下停止压缩测试,以便检查晶粒尺寸分布(GSD)。基于这些测度,谷物破碎的程度通过Einav的破碎指数进行量化(Einav,2007)。清楚地观察到在升高的应力状态下晶粒断裂明显增加,并且向最终的分形状态演变。使用新的一维断裂模型解释获得的结果,以作为下一代断裂力学模型的基础。

著录项

  • 作者

    Park, Joon Soo.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Civil engineering.;Engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号