首页> 外文学位 >Valuing Ecosystem Services from Forested Landscapes: How Urbanization Influences Drinking Water Treatment Cost.
【24h】

Valuing Ecosystem Services from Forested Landscapes: How Urbanization Influences Drinking Water Treatment Cost.

机译:重视森林景观的生态系统服务:城市化如何影响饮用水处理成本。

获取原文
获取原文并翻译 | 示例

摘要

or two decades high total organic carbon (TOC) levels in Converse Reservoir, a water source for Mobile, Alabama, have concerned water treatment officials due to the potential for disinfection byproduct (DBP) formation. TOC reacts with chlorine during drinking water treatment to form DBPs, some of which are carcinogenic and regulated under the Safe Drinking Water Act. Previous studies have shown that raw water TOC concentration >2.7 mg L-1 in Converse Reservoir can cause elevated DBPs during warm weather (May to October). Additional chemical treatment, such as use of powdered activated carbon (PAC) at the water treatment plant is necessary at this plant when raw water TOC concentration exceeds 2.7 mg L-1.;TOC in drinking water reservoirs originates from either watershed sources or internal algal growth. This study evaluated, through paired watershed and reservoir modeling with actual atmospheric data from 1991 to 2005, how urbanization may alter chlorophyll a, total nitrogen (TN), total phosphorus (TP), and TOC concentrations in Converse Reservoir. The Converse Watershed on the urban fringe of Mobile is projected to undergo considerable urbanization by 2020. A base scenario using 1992 land cover was paired with 2020 projections of land use. The Loading Simulation Program C++ (LSPC) watershed model was used to evaluate changes in nutrient concentrations (mg L-1) and loads (kg) to Converse Reservoir.;Combined urban and suburban area was simulated within the watershed from an initial 3% in 1992 to 22% in 2020. From 1992 to 2020, forest to urban land conversion increased TN and TP loads to Converse Reservoir by 109 and 62%, respectively. TOC load increased by 26% compared to base land use. Forest to urban land conversion increased monthly stream flows in 94% of months simulated (1991 to 2005) by a mean increase of 14%. Simulated urbanization generally increased streamflow, but decreased monthly streamflow by 2.9% during drought months. Simulated future overall median TN and TP concentrations (0.82 and 0.017 mg L-1, respectively) were 59 and 66% higher than base concentrations (0.52 and 0.010 mg L-1, respectively); but future median TOC concentration (3.3 mg L-1) was 16% lower than base concentrations. Increased total urban flow caused overall TOC loads (kg) to increase by 26% during the simulation period despite lower TOC concentrations. Monthly analysis indicated significantly elevated TOC concentrations in June, July and August (p0.05) following simulated urbanization. Simulated annual TOC export ranged from 12.7 kg ha-1 y-1 in a severe drought year to 52.8 kg ha-1 y-1 in the year with the highest precipitation. Post-urbanization source water TOC concentrations in the receiving water body will likely increase more than predicted by the watershed model since larger TP loads following urbanization will support increased reservoir algae growth, further increasing internal generation of TOC.;To evaluate reservoir nutrient concentrations in response to urbanization, LSPC watershed model streamflow and selected water quality constituents were input into the Environmental Fluid Dynamics Code (EFDC) reservoir model. EFDC calibration and validation performance ratings for chlorophyll a, TN, TP and TOC ranged from 'satisfactory' to 'very good'. Between 1992 and 2020, simulated forest to urban land conversion increased median overall TOC concentration in the reservoir by 1.1 mg L-1 (41%). From 1992 to 2020, monthly median TOC concentrations between May and October increased 33 and 49% as a result of urbanization. Simulated chlorophyll a, indicating algae growth, accounted for most of the variance in simulated TOC concentration at the reservoir intake between May and November. Base scenario daily TOC concentrations between May and October exceeded 2.7 mg L -1 on 47% of days simulated. Daily TOC concentrations between May and October using the 2020 land use continuously exceeded 2.7 mg L -1. Consequently, based upon simulated urbanization, increased urban land use will result in elevated reservoir TOC concentrations from both autochthonous and allochthonous sources and the need for additional water treatment between May and October.;The cost for additional chemical treatment to offset DBP formation was based on simulated values for raw water TOC at the source water intake. Assuming a PAC cost of ;This research determined that the ecosystem services for reservoir water TOC provided by forest land in the Converse Watershed were
机译:阿拉巴马州莫比尔市的水源-匡威水库中的有机碳总量(TOC)或二十年以来的最高水平已经引起了水处理官员的关注,因为这有可能形成消毒副产物(DBP)。在饮用水处理过程中,TOC与氯发生反应生成DBP,其中一些具有致癌性,并受到《安全饮用水法》的管制。先前的研究表明,Converse水库中原水TOC浓度> 2.7 mg L-1会在温暖的天气(5月至10月)导致DBP升高。当原水TOC浓度超过2.7 mg L-1时,在该工厂必须进行其他化学处理,例如在水处理厂使用粉状活性炭(PAC);饮用水水库中的TOC来源于集水区或内部藻类增长。这项研究通过对流域和水库模型与1991年至2005年的实际大气数据进行配对,评估了城市化如何改变匡威水库中的叶绿素a,总氮(TN),总磷(TP)和TOC浓度。到2020年,莫比尔(Mobile)城市边缘的匡威分水岭(Converse Watershed)预计将经历可观的城市化。使用1992年土地覆盖的基本情景与2020年的土地利用预测相结合。运用负荷模拟程序C ++(LSPC)分水岭模型评估了匡威水库的养分浓度(mg L-1)和负荷(kg)的变化;模拟了分水岭内城市和郊区的组合,最初为3%从1992年的2020年增加到22%。从1992年到2020年,森林到城市土地的转换分别增加了匡威水库的总氮和总磷负荷109和62%。与基础土地用途相比,TOC负荷增加了26%。从森林到城市土地的转换在模拟的1991年至2005年的94%的月份中增加了每月的流量,平均增加了14%。模拟的城市化总体上增加了水流量,但在干旱月份每月水流量减少了2.9%。模拟的未来总TN和TP总中值浓度(分别为0.82和0.017 mg L-1)分别比基本浓度(分别为0.52和0.010 mg L-1)高59和66%。但是未来的TOC中值浓度(3.3 mg L-1)比基本浓度低16%。尽管总TOC浓度较低,但在模拟期间,城市总流量增加导致总TOC负载(kg)增加了26%。每月分析表明,在模拟城市化之后,六月,七月和八月的TOC浓度显着升高(p <0.05)。模拟的年度TOC出口量从严重干旱年份的12.7 kg ha-1 y-1到最高降水年份的52.8 kg ha-1 y-1。城市化后,城市化后源水TOC的浓度可能会比分水岭模型预测的增加更多,因为城市化后更大的TP负荷将支持增加的水藻生长,从而进一步增加TOC的内部产生。为了实现城市化,将LSPC流域模型流量和选定的水质成分输入到环境流体动力学代码(EFDC)水库模型中。叶绿素a,TN,TP和TOC的EFDC校准和验证性能等级从“满意”到“非常好”。在1992年至2020年之间,模拟的森林向城市土地的转化使水库中的总TOC浓度中值增加了1.1 mg L-1(41%)。从1992年到2020年,由于城市化,5月和10月之间的每月TOC浓度中位数增加了33%和49%。在5月至11月之间,模拟的叶绿素a指示藻类的生长,是模拟TOC浓度在水库入口处变化的大部分原因。在模拟的47%的天中,基本情景下5月至10月的每日TOC浓度超过2.7 mg L -1。使用2020年土地使用情况的5月至10月之间的每日TOC浓度连续超过2.7 mg L -1。因此,基于模拟的城市化,增加的城市土地使用量将导致土生土和异源水库中TOC浓度升高,并在5月至10月之间需要进行额外的水处理。源水取水口处原水TOC的模拟值。假设PAC成本为;本研究确定了逆流域林地为水库水TOC提供的生态系统服务为

著录项

  • 作者

    Elias, Emile Hall.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Agriculture Forestry and Wildlife.;Natural Resource Management.;Water Resource Management.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号