首页> 外文学位 >The role of passive joint stiffness and active knee control in robotic leg swinging: Applications to dynamic walking.
【24h】

The role of passive joint stiffness and active knee control in robotic leg swinging: Applications to dynamic walking.

机译:被动关节僵硬和主动膝盖控制在机器人腿部摆动中的作用:在动态步行中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The field of autonomous walking robots has been dominated by the trajectory-control approach, which rigidly dictates joint angle trajectories at the expense of both energy efficiency and stability, and the passive dynamics approach, which uses no actuators, relying instead on natural mechanical dynamics as the sole source of control. Although the passive dynamics approach is energy efficient, it lacks the ability to modify gait or adapt to disturbances. Recently, minimally actuated walkers, or dynamic walkers, have been developed that use hip or ankle actuators---knees are always passive---to regulate mechanical energy variations through the timely application of joint torque pulses. Despite the improvement minimal actuation has provided, energy efficiency remains below target values and perturbation rejection capability (i.e., stability) remains poor. In this dissertation, we develop and analyze a simplified robotic system to assess biologically inspired methods of improving energy efficiency and stability in dynamic walkers. Our system consists of a planar, dynamically swinging leg with hip and knee actuation. Neurally inspired, nonlinear oscillators provide closed-loop control without overriding the leg's natural dynamics. We first model the passive stiffness of muscles by applying stiffness components to the joints of a hip-actuated swinging leg. We then assess the effect active knee control has on unperturbed and perturbed leg swinging. Our results indicate that passive joint stiffness improves energy efficiency by reducing the actuator work required to counter gravitational torque and by promoting kinetic energy transfer between the shank and thigh. We also found that active knee control (1) is detrimental to unperturbed leg swinging because it negatively affects energy efficiency while producing minimal performance improvement and (2) is beneficial during perturbed swinging because the perturbation rejection improvement outweighs the reduction in energy efficiency. By analyzing the effects of applying passive joint stiffness and active knee control to dynamic walkers, this work helps to bridge the gap between the performance capability of trajectory-control robots and the energy-efficiency of passive dynamic robots.
机译:自主行走机器人领域一直由轨迹控制方法控制,该方法以牺牲能源效率和稳定性为代价来严格规定关节角度轨迹;而被动动力学方法则不使用致动器,而是依靠自然机械动力学来控制。唯一的控制来源。尽管被动动力学方法是节能的,但它缺乏修改步态或适应干扰的能力。近来,已开发出使用臀部或踝部执行器(膝盖总是被动的)的微动助行器或动态助行器,以通过及时施加关节扭矩脉冲来调节机械能的变化。尽管提供了最小促动的改进,但是能量效率仍然低于目标值,并且扰动抑制能力(即,稳定性)仍然很差。在本文中,我们开发并分析了一种简化的机器人系统,以评估生物启发方法来改善动态助行器的能量效率和稳定性。我们的系统由可动髋部和膝盖致动的平面动态摆动腿组成。受非线性启发的非线性振荡器可提供闭环控制,而不会影响腿部的自然动力。我们首先通过将刚度分量应用于髋部摆动的摆动腿的关节来模拟肌肉的被动刚度。然后,我们评估主动的膝盖控制对不安和不安的小腿摆动的影响。我们的结果表明,被动关节的刚度通过减少执行反重力所需的致动器功和促进小腿与大腿之间的动能传递来提高能量效率。我们还发现,主动膝关节控制(1)不利于腿部摆动,因为它对能量效率产生负面影响,同时产生最小的性能改善;而(2)主动摆动时,在腿部摆动中有益,因为拒绝扰动的改善超过了能量效率的降低。通过分析将被动关节刚度和主动膝关节控制应用于动态助行器的效果,这项工作有助于弥合轨迹控制机器人的性能与被动动力机器人的能效之间的差距。

著录项

  • 作者

    Migliore, Shane A.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号