首页> 中文期刊>物理化学学报 >Hofmeister离子对水溶液中热响应聚合物的局域环境的影响

Hofmeister离子对水溶液中热响应聚合物的局域环境的影响

     

摘要

Hofmeister离子效应的机制仍然未知.为了进一步探索,我们应用质子核磁共振(1H-NMR)波谱研究了特定离子对聚(2-乙基-2-恶唑啉)和聚(N-异丙基丙烯酰胺)的模型化合物N,N-二甲基丙酰胺(NDA)和N-异丙基异丁酰胺(NPA)水溶液的局域环境的影响.这些聚合物具有热响应性质,是重要的生物工程材料,也受到特异离子效应影响.通过将酰胺键两侧的两个甲基的化学位移的变化相关联,发现对于所有NDA的甲基,特异离子的作用几乎相同.然而,NPA是一个较大的分子,我们发现并不是所有的甲基具有相同程度的特异离子效应.这项研究的结果表明,霍夫梅斯特离子效应可能主要是一种全局效应,而离子与溶质的局部相互作用也起了关键作用.%The Hofmeister ion effect is a very interesting but elusive phenomenon,the importance of which is revealed in self-assembly,ion recognition,and protein folding regulation.With an increasing number of studies suggesting that interactions between ions and solutes play a role in the Hofmeister ion effect,the nature of the Hofmeister phenomenon becomes more debatable.Yet,it is not clear whether the Hofmeister ion effect is a local effect or bulk effect that can reach beyond many hydration shells,where specific interactions between ions and solutes play key roles.In order to further explore this,we applied proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the effects of specific ions on the local environment around N,N-dimethylpropionamide (NDA) and N-isopropylisobutyramide (NPA),which are the model compounds for poly(2-ethyl-2-oxazoline) and poly(N-isopropylacrylamide),respectively.These polymers are important bio-engineering materials that possess thermoresponsive properties and are also subject to specific ion effects.By correlating the changes in chemical shifts of the two methyl groups on either side of the amide bond,it was found that the Hofmeister ion effects on NPA were more anisotropic than on NDA,and that the cationic effects were more anisotropic than the anionic effects on NPA.These results indicated that the effects of specific ions were almost identical for all methyl groups of NDA.On the other hand,NPA is a larger molecule;thus,not all of its methyl groups were subjected to the specific ion effects to the same extent.The calculation of the electrostatic potential surfaces of NDA and NPA suggested that these observations on the Hofmeister ion effects might be due to steric hindrance,and that the observations on the cationic effects might be due to the interactions between cations and NPA being stronger than the interactions between anions and NPA.This would explain why the highly charged cations caused a significant anisotropicity.Additionally,we found that the chemical shift of the water protons (△δH2O) of conventional kosmotropic anions was larger than zero,which suggested a stronger HB and more charge transfer between water and these anions.The △δH2O of conventional chaotropic anions was less than zero.Despite the different solutes,the results were indifferent in both NDA and NPA solutions.Surprisingly,the AδH2O of Cl-at concentrations lower than 1 mol·L-1 was zero,thus becoming the benchmark between chaotropes and kosmotropes.These results suggested a quantitative measurement of kosmotropicity/chaotropicity,where the anion would be kosmotropic if its △δH2O were higher than that of Cl-and chaotropic for the opposing condition.Moreover,the results showed that the effects of the cations on the water structure were minimal,which was consistent with minimal charge transfer between the cations and water.The overall results of this study suggest that the Hofmeister ion effect is a global effect,while local interactions of ions with solutes also play a key role.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号