首页> 中文期刊> 《中国铸造》 >Dependency of microstructure and microhardness on withdrawal rate of Ti-43Al-2Cr-2Nb alloy prepared by electromagnetic cold crucible directional solidification

Dependency of microstructure and microhardness on withdrawal rate of Ti-43Al-2Cr-2Nb alloy prepared by electromagnetic cold crucible directional solidification

         

摘要

The intermetallic Ti-43Al-2Cr-2Nb(at.%) alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V) ranging from 0.2 to 1.0 mm·min-1, at a constant temperature gradients(G=18 K·mm-1). Macrostructures of the alloy were observed by optical microscopy. Microstructures of the alloy were characterized by scanning electron microscopy(SEM) in back-scattered electron mode and transmission electron microscopy. Results showed that morphologies of macrostructure depend greatly on the applied withdrawal rate. Continuous columnar grains can be obtained under slow withdrawal rates ranging from 0.2 to 0.6 mm·min-1. The microstructure of the alloy was composed of α2/γ lamellar structures and a small number of mixtures of B2 phases and blocky γ phases. The columnar grain size(d) and interlamellar spacing(λ) decrease with an increasing withdrawal rate. The effect of withdrawal rate on microhardness was also investigated. The microhardness of the directional y solidified Ti-43Al-2Cr-2Nb alloy increases with an increase in withdrawal rate. This is mainly attributed to the increase of B2 and α2 phases as well as the refinement of lamellae.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号