首页> 中文期刊> 《能源与动力工程(英文)》 >Spatial Reactor Dynamics and Thermo Hydraulic Behavior Simulation of a Large AGR Nuclear Power Reactor in Response to a Reactivity Step Change Disturbance

Spatial Reactor Dynamics and Thermo Hydraulic Behavior Simulation of a Large AGR Nuclear Power Reactor in Response to a Reactivity Step Change Disturbance

         

摘要

In this article, two-dimensional partial differential equations with time representation of nuclear power reactor kinetics are considered for spatial reactor dynamics and thermo hydraulic behavior analysis of a large thermal advanced gas cooled reactor (AGR) type used for nuclear power generation. The equations include the neutron flux equation and delayed neutron precursor concentration, together with taking into account the equations to represent the thermo hydraulic behavior of the fuel, coolant and moderator temperatures. These equations are solved numerically using the finite difference method. For time propagation, an implicit method is applied. The desired initial condition for the reactor to stay at stable critical condition is established by finding the correct value of reactivity. The reactivity disturbance effect in the reactor is studied for different cases and presented for high reactivity values. The model was developed for the analysis of a large AGR with 2000 MWe for future power generation. The results show that the model not only behaves stably but also predicts the results physically for all the various parameters.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号