首页> 中文期刊> 《材料科学与应用期刊(英文)》 >Effect of Additional Surfaces on Ordinary Portland Cement Early-Age Hydration

Effect of Additional Surfaces on Ordinary Portland Cement Early-Age Hydration

         

摘要

Early-age hydration of Ordinary Portland Cement (OPC) was studied in the presence of two additional surfaces. Additional surfaces are known to accelerate the early-age hydration of OPC. Autocatalytic reaction modelling was used to determine acceleration mechanism of additional surfaces. Heat development of the hydration was measured with semi-adiabatic calorimetry and the results were modelled with an autocatalytic reaction. Autocatalytic reaction modelling was able to determine number of initially active nucleation sites in early-age hydration. OPC hydration followed autocatalytic reaction principles throughout induction period and accelerating period. Both of the added surfaces, limestone filler and calcium-silicate-hydrate (C-S-H) coated limestone filler accelerated the early-age hydration. According to autocatalytic modelling, the C-S-H coated filler increased the number of initially active nucleation sites. Pristine limestone filler accelerated the early-age hydration by providing the additional nucleation sites throughout the early-age hydration. The difference was explained with common theories of nucleation and crystal growth. Autocatalytic model and measured calorimeter curve started to significantly deviate at the inflection point, where the reaction mode changed. The reaction mode change depended on the average particle distance. Early-age hydration, modelled as autocatalytic reaction was able to improve understanding of OPC early-age hydration and quantify the number of initially active nucleation sites. Understanding and quantifying the acceleration mechanisms in early-age hydration will aid larger utilization of supplementary cementitious materials where understanding the early-age strength development is crucial.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号