首页> 中文期刊> 《中文信息学报》 >利用单语数据改进神经机器翻译压缩模型的翻译质量

利用单语数据改进神经机器翻译压缩模型的翻译质量

         

摘要

该文提出利用一个大型且精度高的神经机器翻译模型(教师模型)从单语数据中提取隐性双语知识,从而改进小型且精度低的神经机器翻译模型(学生模型)的翻译质量.该文首先提出了"伪双语数据"的教学方法,利用教师模型翻译单语数据获得的合成双语数据改进学生模型,然后提出了"负对数似然—知识蒸馏联合优化"教学方法,除了利用合成双语数据,还利用教师模型获得的目标语言词语概率分布作为知识,从而在知识蒸馏框架下提高学生模型的翻译质量.实验证明,在中英和德英翻译任务上,使用该方法训练的学生模型不仅在领域内测试集上显著超过了基线学生模型,而且在领域外测试集上的泛化性能也得到了提高.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号