首页> 中文期刊> 《浙江大学学报(英文版)A辑:应用物理与工程》 >Restrained torsion of open thin-walled beams including shear deformation effects

Restrained torsion of open thin-walled beams including shear deformation effects

         

摘要

A first-order torsion theory based on Vlasov theory has been developed to investigate the restrained torsion of open thin-walled beams. The total rotation of the cross section is divided into a free warping rotation and a restrained shear rotation. In first-order torsion theory, St. Venant torque is only related to the free warping rotation and the expression of St. Venant torque is derived by using a semi-inverse method. The relationship between the warping torque and the restrained shear rotation is estab- lished by using an energy method. The torsion shear coefficient is then obtained. On the basis of the torsion equilibrium, the governing differential equation of the restrained torsion is derived and the corresponding initial method is given to solve the equation. The relationship between total rotation and free warping rotation is obtained. A parameter λ, which is associated with the stiffness property of a cross section and the beam length, is introduced to determine the condition, under which the St. Venant constant is negligible. Consequently a simplified theory is derived. Numerical examples are illustrated to validate the current approach and the results of the current theory are compared with those of some other available methods. The results of comparison show that the current theory provides more accurate results. In the example of a channel-shaped cantilever beam, the applicability of the simplified theory is determined by the parameter study of λ.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号