首页> 中文期刊> 《天文学进展》 >激光干涉仪引力波探测器

激光干涉仪引力波探测器

         

摘要

引力波的存在是爱因斯坦在广义相对论中提出的一个重要预言,引力波探测是当代物理学最重要的前沿领域之一。经过近半个世纪的艰苦努力,随着几个大型激光干涉仪引力波探测器在21世纪初的出现并于近几年达到前所未有的灵敏度,引力波探测进入了一个崭新的时代。人类有望在第二代地基激光干涉仪引力波探测器开始科学运行(约2015年)之后的几年内,不仅可以直接探测到引力波,更将打开一扇观测宇宙的新窗口。引力波探测也将成为继电磁辐射、宇宙线和中微子之后,人类探索宇宙奥秘的又一重要手段。介绍了激光干涉仪引力波探测器的性能和工作原理,详细分析了其关键部件,如:迈克尔孙干涉仪、法布里-珀罗腔、功率循环系统、激光器、清模器、倒摆、单体几何反弹簧过滤器、真空系统等的结构、性能和工艺特点,展望了其广阔的发展前景。%Gravitational Waves (GWs) are perturbations of space-time which propagate at the speed of light. The existence of GWs is one of the greatest predictions of Einstein’s relativistic gravitational theory. GWs could carry information of the stars and the Universe which is inaccessible to electromagnetic radiation, cosmic rays and neutrinos. Direct detec-tion of GWs is one of the most challenging and exciting sub jects in physics. The efforts of direct detection of GWs started at the middle of last century. After near 50 years, large-scale laser interferometer GW detectors, such as LIGO in US and Virgo in Italy, were built in the beginning of this century. Although no GWs have been detected directly, these first generation detectors have reached their design sensitivities (which is unprecedented) antic-ipated more than 20 years ago. It is expected that not only direct detection of GWs will become possible after the advanced versions of LIGO/Virgo come online in around 2015, we will also be able to open a new window to observe our Universe and thus start the time of GW astronomy. We review the working principle, the performances and structures of the core parts of LIGO/Virgo alike GW interferometers, including the high sensitivity Michelson interferometer, the Fabry-Perot cavity, the power recycling system, the high power stabilized laser, the mode cleaner, the seismic attenuation system and the vacuum system.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号