首页> 中文期刊> 《中国科学》 >Theoretical analysis and simulation of thermoelastic deformation of bimorph microbeams

Theoretical analysis and simulation of thermoelastic deformation of bimorph microbeams

         

摘要

In this paper, a purely mechanical model for the thermoelastic behavior of a bimorph microbeam is presented. The thermoelastic coupling problem of the microbeam is converted to a mechanical problem by simply replacing the thermal stress in the beam with a bulk force and a surface force. Thermoelastic deformation of the bimorph microbeams with constraints frequently used in micro-electro-mechanical systems (MEMS) devices has been derived based on this model and is characterized by FEA simulation. Coincidence of the results from theory and simulation demonstrates the validity of the model. The analysis shows that a bimorph microbeam with a soft constraint and a uniform temperature field has a larger thermoelastic deformation than that with a hard constraint and a linear temperature field. In addition to the adoption of materials with large CTE mismatch,thickness ratio and length ratio of the two layers need to be optimized to get a large thermoelastic deformation.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号