首页> 美国卫生研究院文献>ACS AuthorChoice >In SituChemical Oxidation of Contaminated Groundwaterby Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxidesand Aquifer Materials
【2h】

In SituChemical Oxidation of Contaminated Groundwaterby Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxidesand Aquifer Materials

机译:原位污染地下水的化学氧化过硫酸盐:分解为含Fe(III)和Mn(IV)的氧化物和含水层材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass andsurface area. As a result of radical chain reactions, the rate ofpersulfate decomposition increased by as much as 100 times when benzeneconcentrations exceeded 0.1 mM. Due to its relatively slow rate ofdecomposition in the subsurface, it can be advantageous to injectpersulfate into groundwater, allowing it to migrate to zones of lowhydraulic conductivity where clays, metal oxides, and contaminantswill accelerate its conversion into reactive oxidants.
机译:过硫酸盐(S2O8 2-)越来越多地用于地下水中有机污染物的原位化学氧化(ISCO),尽管对其转化成反应性物种的机理尚不完全了解。特别地,尚未详细研究天然存在的矿物表面对过硫酸盐的分解。为了深入了解地下过硫酸盐的反应速率和分解机理,并确定提高其功效的可能方法,在存在从现场采集的纯金属氧化物,粘土和代表性含水层固体的情况下,研究了过硫酸盐的分解。在存在和不存在苯的情况下。在地下水典型条件下,Fe(III)-和Mn(IV)-氧化物催化将过硫酸盐转化为硫酸根(SO4 •– )和羟基(HO )在几周的时间范围内,其速度是无金属系统中观察到的速度的2–20倍。就过硫酸盐的分解而言,无定形的水铁矿是反应性最高的铁矿物,反应速率与固体质量成正比。表面积。由于自由基链反应,苯时,过硫酸盐分解增加了100倍浓度超过0.1 mM。由于它的速度比较慢在地下分解,注入可能是有利的过硫酸盐进入地下水,使其迁移到低水区粘土,金属氧化物和污染物的水力传导性将加速其转化为反应性氧化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号