...
首页> 外文期刊>Environmental Science & Technology >In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(Ⅲ)- and Mn(Ⅳ)-Containing Oxides and Aquifer Materials
【24h】

In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(Ⅲ)- and Mn(Ⅳ)-Containing Oxides and Aquifer Materials

机译:过硫酸盐对污染的地下水进行原位化学氧化:含Fe(Ⅲ)和Mn(Ⅳ)的氧化物和含水层材料分解

获取原文
获取原文并翻译 | 示例
           

摘要

Persulfate (S_2O_8~(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(Ⅲ)- and Mn(Ⅳ)-oxides catalytically converted persulfate into sulfate radical (SO_4~(•-)) and hydroxyl radical (HO~•) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.
机译:过硫酸盐(S_2O_8〜(2-))越来越多地用于地下水中有机污染物的原位化学氧化(ISCO),尽管对该机理转化为反应性物种的机理尚不完全了解。特别地,尚未详细研究天然存在的矿物表面对过硫酸盐的分解。为了深入了解地下过硫酸盐的反应速率和分解机理,并确定提高其效力的可能方法,在现场现场收集的纯金属氧化物,粘土和代表性含水层固体存在下,对过硫酸盐的分解进行了研究。在存在和不存在苯的情况下。在典型的地下水条件下,Fe(Ⅲ)和Mn(Ⅳ)氧化物在几周的时间尺度内以过高的速率催化将过硫酸盐催化转化为硫酸根(SO_4〜(•-))和羟基自由基(HO〜•)。比在无金属系统中观察到的速度快2-20倍。就过硫酸盐的分解而言,无定形的三水铁矿是反应性最高的铁矿物,反应速率与固体质量和表面积成比例。自由基链反应的结果是,当苯浓度超过0.1 mM时,过硫酸盐的分解速度增加了100倍。由于其在地下的分解速度相对较慢,因此将过硫酸盐注入地下水中,使其迁移到水力传导率低的区域是有利的,在该区域中粘土,金属氧化物和污染物会加速其转化为反应性氧化剂。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第17期|10330-10336|共7页
  • 作者单位

    Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States, Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521, USA;

    Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States;

    Department of Material Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States;

    Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号