首页> 美国卫生研究院文献>ACS Omega >Computational Study of MoS2/HfO2 DefectiveInterfaces for Nanometer-Scale Electronics
【2h】

Computational Study of MoS2/HfO2 DefectiveInterfaces for Nanometer-Scale Electronics

机译:MoS2 / HfO2缺陷的计算研究纳米级电子接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Atomic structures and electronic properties of MoS2/HfO2 defective interfaces are investigated extensively for future field-effect transistor device applications. To mimic the atomic layer deposition growth under ambient conditions, the impact of interfacial oxygen concentration on the MoS2/HfO2 interface electronic structure is examined. Then, the effect on band offsets (BOs) and the thermodynamic stability of those interfaces is investigated and compared with available relevant experimental data. Our results show that the BOs can be modified up to 2 eV by tuning the oxygen content through, for example, the relative partial pressure. Interfaces with hydrogen impurities as well as various structural disorders were also considered, leading to different behaviors, such as n-type doping, or introducing defect states close to the Fermi level because of the formation of hydroxyl groups. Then, our results indicate that for a well-prepared interface the electronic device performance should be better than that of other interfaces, such as III–V/high-κ,because of the absence of interface defect states. However, any unpassivateddefects, if present during oxide growth, strongly affect the subsequentelectronic properties of the interface. The unique electronic propertiesof monolayer-to-few-layered transition-metal dichalcogenides and dielectricinterfaces are described in detail for the first time, showing thepromising interfacial characteristics for future transistor technology.
机译:MoS2 / HfO2缺陷界面的原子结构和电子性能已被广泛研究,以用于未来的场效应晶体管器件应用。为了模拟环境条件下原子层沉积的增长,研究了界面氧浓度对MoS2 / HfO2界面电子结构的影响。然后,研究了这些界面对带隙(BO)和热力学稳定性的影响,并与可用的相关实验数据进行了比较。我们的结果表明,可以通过例如相对分压来调节氧含量,从而将BOs调节至2 eV。还考虑了与氢杂质的界面以及各种结构紊乱,导致不同的行为,例如n型掺杂,或由于形成羟基而引入接近费米能级的缺陷状态。然后,我们的结果表明,对于精心准备的接口,电子设备的性能应优于其他接口,例如III–V /high-κ,因为没有界面缺陷状态。但是,任何未钝化的缺陷,如果在氧化物生长期间存在,会严重影响后续界面的电子属性。独特的电子特性到几层过渡金属二卤化物和电介质的合成首次详细描述了界面,显示了未来晶体管技术的有希望的界面特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号