首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review
【2h】

Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

机译:改进的分类精度和增加的命令数量的混合脑机接口技术:综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brainon-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
机译:在本文中,对提高分类精度和增加命令数量的非侵入性混合脑机接口(hBCI)技术进行了综述。结合两种以上方式的杂交是脑成像和假体控制的新趋势。脑电图(EEG)由于易于使用和快速的时间分辨率,因此与其他脑/非脑信号采集方式(例如功能近红外光谱(fNIRS),肌电图(EMG),眼电图( EOG)和眼动仪。杂交的三个主要目的是增加控制命令的数量,提高分类精度和减少信号检测时间。目前,最常用的是EEG + + fNIRS和EEG + + EOG的这种组合。讨论了与准确性改善相关的四个主要组件(即硬件,范例,分类器和功能)。在大脑信号的情况下,将运动想象力/运动任务与认知任务结合起来,以提高主动式脑机接口(BCI)的准确性。有时将主动任务和被动任务组合在一起:具有稳态诱发视觉电位(SSVEP)的运动想象力和P300的运动想象力。对于响应式任务,SSVEP与P300结合最广泛,以增加命令数量。但是,被动BCI很少。在讨论了hBCI开发所涉及的硬件和策略之后,第二部分研究了用于增加控制命令数量和提高分类准确性的方法。提供了hBCI在日常生活场景中的实时应用的未来前景和扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号