首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg
【2h】

Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg

机译:机器人腿中双关节肌肉-腱结构的系列弹性行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the role of lower leg muscle-tendon structures in providing serial elastic behavior to the hip actuator. We present a leg design with physical elastic elements in leg angle and virtual leg axis direction, and its impact onto energy efficient legged locomotion. By testing and comparing two robotic lower leg spring configurations, we can provide potential explanations of the functionality of similar animal leg morphologies with lower leg muscle-tendon network structures. We investigate the effects of leg angle compliance during locomotion. In a proof of concept, we show that a leg with a gastrocnemius inspired elasticity possesses elastic components that deflect in leg angle directions. The leg design with elastic elements in leg angle direction can store hip actuator energy in the series elastic element. We then show the leg's advantages in mechanical design in a vertical drop experiment. In the drop experiments the biarticular leg requires 46% less power. During drop loading, the leg adapts its posture and stores the energy in its springs. The increased energy storing capacity in leg angle direction reduces energy requirements and cost of transport by 31% during dynamic hopping to a cost of transport of 1.2 at 0.9 kg body weight. The biarticular robot leg design has major advantages, especially compared to more traditional robot designs. Despite its high degree of under-actuation, it is easy to converge into and maintain dynamic hopping locomotion. The presented control is based on a simple-to-implement, feed-forward pattern generator. The biarticular legs lightweight design can be rapidly assembled and is largely made from elements created by rapid prototyping. At the same time it is robust, and passively withstands drops from 200% body height. The biarticular leg shows, to the best of the authors' knowledge, the lowest achieved relative cost of transport documented for all dynamically hopping and running robots of 64% of a comparable natural runner's COT.
机译:我们调查小腿肌肉肌腱结构在向髋部执行器提供一系列弹性行为中的作用。我们提出了一种在腿部角度和虚拟腿部轴线方向上具有物理弹性元素的腿部设计,它对节能腿的运动产生了影响。通过测试和比较两个机器人的小腿弹簧结构,我们可以提供具有小腿肌肉-肌腱网络结构的类似动物腿部形态功能的潜在解释。我们调查运动过程中腿部角度顺应性的影响。在概念证明中,我们表明具有腓肠肌启发性弹性的腿具有在腿角度方向上偏转的弹性组件。在腿部角度方向上具有弹性元件的腿部设计可以将髋部促动器能量存储在串联弹性元件中。然后,我们在垂直跌落实验中展示了支腿在机械设计中的优势。在跌落实验中,双关节腿所需的功率减少了46%。在水滴加载过程中,腿会调整其姿势并将能量存储在弹簧中。腿部角度方向上增加的能量存储容量在动态跳跃期间将能量需求和运输成本降低了31%,而在0.9千克体重下的运输成本为1.2。双关节机器人腿设计具有主要优势,尤其是与更传统的机器人设计相比。尽管其欠驱动程度很高,但它很容易收敛并保持动态跳变运动。提出的控件基于易于实现的前馈模式生成器。双关节腿轻巧的设计可以快速组装,并且很大程度上由快速原型制作而成。同时,它坚固耐用,可以承受200%身高的跌落。就作者所知,双关节腿显示的是所有动态跳跃和运行的机器人所记录的相对运输成本的最低值,是自然跑步者的COT的64%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号