首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Secretion of Acetylxylan Esterase From Chlamydomonas reinhardtii Enables Utilization of Lignocellulosic Biomass as a Carbon Source
【2h】

Secretion of Acetylxylan Esterase From Chlamydomonas reinhardtii Enables Utilization of Lignocellulosic Biomass as a Carbon Source

机译:莱茵衣藻中乙酰木聚糖酯酶的分泌使木质纤维素生物质作为碳源得以利用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microalgae offer a promising biological platform for sustainable biomanufacturing of a wide range of chemicals, pharmaceuticals, and fuels. The model microalga Chlamydomonas reinhardtii is thus far the most versatile algal chassis for bioengineering and can grow using atmospheric CO2 and organic carbons (e.g., acetate and pure cellulose). Ability to utilize renewable feedstock like lignocellulosic biomass as a carbon source could significantly accelerate microalgae-based productions, but this is yet to be demonstrated. We observed that C. reinhardtii was not able to heterotrophically grow using wheat straw, a common type of lignocellulosic biomass, likely due to the recalcitrant nature of the biomass. When the biomass was pretreated with alkaline, C. reinhardtii was able to grow using acetate that was released from the biomass. To establish an eco-friendly and self-sustained growth system, we engineered C. reinhardtii to secrete a fungal acetylxylan esterase (AXE) for hydrolysis of acetylesters in the lignocellulosic biomass. Two transgenic strains (CrAXE03 and CrAXE23) secreting an active AXE into culture media were isolated. Incubation of CrAXE03 with wheat straw resulted in an eight-fold increase in the algal cell counts with a concomitant decrease of biomass acetylester contents by 96%. The transgenic lines showed minor growth defects compared to the parental strain, indicating that secretion of the AXE protein imposes limited metabolic burden. The results presented here would open new opportunities for applying low-cost renewable feedstock, available in large amounts as agricultural and manufacturing by-products, for microalgal cultivation. Furthermore, acetylesters and acetate released from them, are well-known inhibitors in lignocellulosic biofuel productions; thus, direct application of the bioengineered microalga could be exploited for improving renewable biofuel productions.
机译:微藻为广泛的化学品,药物和燃料的可持续生物制造提供了一个有希望的生物学平台。迄今为止,模型微藻衣藻(Chlamydomonas reinhardtii)是生物工程用途最广泛的藻类底盘,可以使用大气中的CO2和有机碳(例如乙酸盐和纯纤维素)生长。利用木质纤维素生物质等可再生原料作为碳源的能力可以显着加快基于微藻类的生产,但这尚未得到证实。我们观察到,莱茵衣藻不能使用小麦秸秆(一种常见的木质纤维素生物质)进行异养生长,这可能是由于生物质的顽强特性所致。当用碱性预处理生物质时,莱茵衣藻能够使用从生物质中释放的乙酸盐生长。为了建立一个生态友好和自我维持的生长系统,我们设计了莱茵衣藻以分泌真菌乙酰木聚糖酯酶(AXE)来水解木质纤维素生物质中的乙酰酯。分离了两种将活性AX分泌到培养基中的转基因菌株(CrAXE03和CrAXE23)。将CrAXE03与麦草一起温育导致藻类细胞计数增加了八倍,同时生物质乙酰酯含量也降低了96%。与亲本菌株相比,转基因品系显示出较小的生长缺陷,表明AX蛋白的分泌施加了有限的代谢负担。此处提出的结果将为应用低成本可再生原料提供新的机会,这些原料可作为农业和生产副产品大量使用,用于微藻栽培。此外,从中释放出的乙酰酯和乙酸盐是木质纤维素生物燃料生产中众所周知的抑制剂。因此,可以利用生物工程微藻的直接应用来改善可再生生物燃料的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号