首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Challenges and Future Prospects on 3D in-vitro Modeling of the Neuromuscular Circuit
【2h】

Challenges and Future Prospects on 3D in-vitro Modeling of the Neuromuscular Circuit

机译:神经肌肉回路的3D体外建模的挑战和未来前景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.
机译:骨骼肌纤维的运动是由参与运动回路的几种细胞(运动神经元,感觉神经元,雪旺氏细胞,星形胶质细胞,小胶质细胞和肌肉细胞)的协同作用产生的。该回路任何部分的故障都可能阻碍或阻碍协调的肌肉运动,并导致神经肌肉疾病(NMD)或确定其严重程度。研究回路的片段不能提供病理过程的全面而完整的视图。我们追踪了脊柱运动回路的体外建模研究的历史发展,以及生物工程创新技术如何显示出精确模拟脊柱运动回路生理状况的优势。分析了间隔微流体培养系统(cμFCS)的新发展,人类诱导的多能干细胞(hiPSC)的使用和3D细胞培养。我们最终将解决当前研究模型的局限性以及神经肌肉研究的三个主要挑战:(i)模拟整个脊髓运动回路,包括涉及的所有细胞类型以及对每个细胞的独立和相互依赖作用的评估; (ii)在体内模拟成熟神经元的神经退行性反应; (iii)开发,调整,实施和组合cμFCS,hiPSC和3D培养技术,以最终创建针对患者的完整,翻译和可靠的NMD体外模型。克服这些挑战将极大地促进对NMD中发生的事件的了解,并加快寻找新疗法的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号