首页> 美国卫生研究院文献>Environmental Health Perspectives >Transport of toxic metals by molecular mimicry.
【2h】

Transport of toxic metals by molecular mimicry.

机译:通过分子模拟运输有毒金属。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intracellular concentrations of essential metals are normally maintained within a narrow range, whereas the nonessential metals generally lack homeostatic controls. Some of the factors that contribute to metal homeostasis have recently been identified at the molecular level and include proteins that mediate import of essential metals from the extracellular environment, those that regulate delivery to specific intracellular proteins or compartments, and those that mediate metal export from the cell. Some of these proteins appear highly selective for a given essential metal; however, others are less specific and interact with multiple metals, including toxic metals. For example, DCT1 (divalent cation transporter-1; also known as NRAMP2 or DMT1) is considered to be a major cellular uptake mechanism for Fe(2+) and other essential divalent metals, but this protein also mediates uptake of Cd(2+), Pb(2+), and possibly of other toxic divalent metals. The ability of nonessential metals to interact with binding sites for essential metals is critical for their ability to gain access to specific cellular compartments and for their ability to disrupt normal biochemical or physiological functions. Another major mechanism by which metals traverse cell membranes and produce cell injury is by forming complexes whose overall structures mimic those of endogenous molecules. For example, it has long been known that arsenate and vanadate can compete with phosphate for transport and metabolism, thereby disrupting normal cellular functions. Similarly, cromate and molybdate can mimic sulfate in biological systems. Studies in our laboratory have focused on the transport and toxicity of methylmercury (MeHg) and inorganic mercury. Mercury has a high affinity for reduced sulfhydryl groups, including those of cysteine and glutathione (GSH). MeHg-l-cysteine is structurally similar to the amino acid methionine, and this complex is a substrate for transport systems that carry methionine across cell membranes. Once MeHg has entered the cell, some of it binds to GSH, and the resulting MeHg-glutathione complex appears to be a substrate for proteins that mediate cellular export of glutathione S-conjugates, including the apically located MRP2 (multidrug resistance-associated protein 2) transporter, a member of the adenosine triphosphate-binding cassette protein superfamily. Because other toxic metals also form complexes with endogenous molecules, comparable mechanisms may be involved in their membrane transport and disposition.
机译:细胞内必需金属的浓度通常保持在狭窄范围内,而非必需金属通常缺乏体内平衡控制。最近,在分子水平上已经发现了一些导致金属稳态的因素,包括介导从细胞外环境导入必需金属的蛋白质,调节向特定细胞内蛋白质或区室的传递的蛋白质,以及介导金属从细胞内输出的蛋白质。细胞。这些蛋白质中的某些对特定的必需金属表现出高度的选择性。然而,其他一些则特异性较低,并与多种金属(包括有毒金属)相互作用。例如,DCT1(二价阳离子转运蛋白-1;也称为NRAMP2或DMT1)被认为是Fe(2+)和其他必需二价金属的主要细胞摄取机制,但该蛋白质还介导Cd(2+ ),Pb(2+)以及其他有毒的二价金属。非必需金属与必需金属的结合位点相互作用的能力对于它们进入特定细胞区室的能力以及破坏正常生化或生理功能的能力至关重要。金属穿过细胞膜并产生细胞损伤的另一主要机制是形成复合物,其整体结构模仿内源分子的结构。例如,早就知道砷酸根和钒酸根可以与磷酸盐竞争转运和代谢,从而破坏正常的细胞功能。同样,可乐酸酯和钼酸酯可模仿生物系统中的硫酸盐。我们实验室的研究集中于甲基汞(MeHg)和无机汞的运输和毒性。汞对还原的巯基具有高亲和力,包括半胱氨酸和谷胱甘肽(GSH)的巯基。 MeHg-1-半胱氨酸在结构上与氨基酸蛋氨酸类似,并且该复合物是跨细胞膜携带蛋氨酸的运输系统的底物。 MeHg进入细胞后,其中一些会与GSH结合,所得的MeHg-谷胱甘肽复合物似乎是介导谷胱甘肽S-缀合物细胞出口的蛋白质的底物,包括顶端定位的MRP2(与多药耐药相关的蛋白质2 )转运蛋白,三磷酸腺苷结合盒蛋白超家族成员。由于其他有毒金属也与内源性分子形成络合物,因此类似的机制可能涉及其膜的运输和处置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号