首页> 美国卫生研究院文献>Environmental Health Perspectives >In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene tetrachloroethylene and 111-trichloroethane.
【2h】

In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene tetrachloroethylene and 111-trichloroethane.

机译:计算机毒理学:模拟人类接触三氯乙烯四氯乙烯和111-三氯乙烷混合物的相互作用阈值。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we integrated our understanding of biochemistry, physiology, and metabolism of three commonly used organic solvents with computer simulation to present a new approach that we call "in silico" toxicology. Thus, we developed an interactive physiologically based pharmacokinetic (PBPK) model to predict the individual kinetics of trichloroethylene (TCE), perchloroethylene (PERC), and methylchloroform (MC) in humans exposed to differently constituted chemical mixtures of the three solvents. Model structure and parameterization originate from the literature. We calibrated the single-compound PBPK models using published data and described metabolic interactions within the chemical mixture using kinetic constants estimated in rats. The mixture model was used to explore the general pharmacokinetic profile of two common biomarkers of exposure, peak TCE blood levels and total amount of TCE metabolites generated, in rats and humans. Assuming that a 10% change in the biomarkers corresponds to a significant health effect, we calculated interaction thresholds for binary and ternary mixtures of TCE, PERC, and MC. Increases in the TCE blood levels led to higher availability of the parent compound for glutathione conjugation, a metabolic pathway associated with kidney toxicity/carcinogenicity. The simulated change in production rates of toxic conjugative metabolites exceeded 17% for a corresponding 10% increase in TCE blood concentration, indicating a nonlinear risk increase due to combined exposures to TCE. Evaluation of metabolic interactions and their thresholds illustrates a unique application of PBPK modeling in risk assessment of occupational exposures to chemical mixtures.
机译:在这项研究中,我们将对三种常用有机溶剂的生物化学,生理学和代谢的理解与计算机模拟相结合,提出了一种新方法,我们称之为“计算机模拟”毒理学。因此,我们开发了一种互动的基于生理的药代动力学(PBPK)模型,以预测暴露于三种溶剂的化学组成不同的人体中三氯乙烯(TCE),全氯乙烯(PERC)和甲基氯仿(MC)的个体动力学。模型结构和参数化源自文献。我们使用公开的数据校准了单化合物PBPK模型,并使用在大鼠中估计的动力学常数描述了化学混合物内的代谢相互作用。混合物模型用于研究大鼠和人类中两种常见的暴露生物标志物的一般药代动力学特征,即峰值TCE血药水平和产生的TCE代谢物总量。假设生物标志物的10%变化对应于显着的健康影响,我们计算了TCE,PERC和MC的二元和三元混合物的相互作用阈值。 TCE血药浓度的升高导致母体化合物可用于谷胱甘肽结合(一种与肾脏毒性/致癌性有关的代谢途径)的可用性更高。 TCE血药浓度相应增加10%,模拟的有毒共轭代谢产物的生产率变化超过17%,这表明由于三氯乙酸(TCE)的联合暴露导致非线性风险增加。代谢相互作用及其阈值的评估说明了PBPK模型在化学混合物职业接触风险评估中的独特应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号