首页> 美国卫生研究院文献>PLoS Computational Biology >Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees
【2h】

Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow Simulations: Application to Arterial Bifurcations and Trees

机译:基于粒子的血流模拟的流入/流出边界条件:在动脉分叉和树木中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the “all-or-nothing” phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.
机译:当血液流过分叉时,红细胞(RBC)进入不同血细胞比容水平的侧支,甚至所有RBC只能进入一个分支,导致血浆和RBC完全分离。为了通过基于粒子的介观模拟对这种现象进行量化,我们为多相流中的开放边界条件开发了一个通用框架,该框架甚至对高血细胞比容水平也有效。入口处的流入与在周期性边界条件下的先导模拟中生成的完全展开的流量重复。通过自适应力控制流出,以将流速和速度梯度保持在固定值,同时将留在出口的小动脉的颗粒从系统中清除。在验证这种方法后,我们进行了系统的3D模拟,以研究直径20至32微米的小动脉中的等离子撇除。对于分支处的流率为6:1的情况,我们观察到“全有或全无”现象,血浆仅进入低流率分支。然后,我们模拟了在具有不同分叉角度和相同子枝直径的小动脉分叉中的血浆分离。我们的模拟预测,随着分叉角的增加,通过主子分支的RBC通量将显着增加。最后,我们证明了该新方法在模拟使用血管生成模型构造的具有多个入口和出口的血管中的血流的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号