首页> 美国卫生研究院文献>PLoS Computational Biology >Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection
【2h】

Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection

机译:通过仿真和基于多目标优化的模型选择评估白细胞运动模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs) against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto fronts of optimal solutions are directly contrasted to identify models best capturing in vivo dynamics, a technique that can aid model selection more generally. Our technique robustly determines our cell populations’ motility strategies, and paves the way for simulations that incorporate accurate immune cell motility dynamics.
机译:现在,双光子显微镜的出现揭示了关于细胞运动性和体内相互作用的空前,详细的时空数据。了解细胞运动模式是深入了解免疫应答的发展和可能操纵的关键。计算仿真已成为一种成熟的技术,可用于理解免疫过程并在实验数据的背景下评估假设,并且有明确的范围可以整合显微镜所知的动力动力学。但是,确定哪种运动模型最能反映体内运动并非易事:3D运动是一个复杂的过程,需要几个指标来表征。这使模型选择和参数化变得复杂,必须同时针对多个指标执行模型选择和参数化。在这里,我们通过同时考虑细胞的平移和转弯速度以及蜿蜒曲折的指标,评估在炎症条件下,嗜中性粒细胞和淋巴结T细胞的运动动力学对布朗运动,Lévy行走和一些相关的随机行走(CRW)的抵抗力。表现出固有翻译速度和方向连续性的异质细胞包含两个数据集,当模拟为CRW时,该功能可显着改善体内运动性的捕获。此外,平移和转弯速度成反比,并且相应的CRW模拟再次改善了对我们体内数据的捕获,尽管程度较小。相反,布朗运动很难反映我们的数据。 Lévywalk在捕获嗜中性粒细胞运动的某些方面具有竞争性,但仅T细胞定向持久性,突出了同时针对几种运动指标评估模型的重要性。这是通过多目标优化的新颖应用来实现的,其中,每个模型都是独立实现的,然后进行参数化以识别针对每个指标的最佳性能折衷。直接比较最佳解决方案的所得Pareto前沿,以识别可最佳捕获体内动力学的模型,该技术可更广泛地帮助模型选择。我们的技术有力地确定了我们细胞群的运动策略,并为纳入准确的免疫细胞运动动力学的模拟铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号