首页> 美国卫生研究院文献>PLoS Computational Biology >Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
【2h】

Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

机译:使用最佳反馈控制建模和自适应点过程滤波的鲁棒脑机接口设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics.
机译:使用诸如卡尔曼滤波器的解码器并通过闭环解码器自适应(CLDA)查找其参数,在脑机接口(BMI)中取得了很大进步。但是,当前的解码器无法直接对尖峰进行建模,因此可能会限制BMI控制和自适应的处理时间尺度。此外,尽管存在用于意图估计和辅助训练的专用CLDA技术,但缺乏一个可将不同设置概括化的统一且系统的CLDA框架。在这里,我们开发了一种新颖的闭环BMI训练体系结构,该体系结构允许使用尖峰事件进行处理,控制和适应,实现鲁棒的控制并扩展到各种任务。此外,我们开发了一个统一的控制理论CLDA框架,可以在其中进行意图估计,辅助训练和适应。该架构结合了闭环BMI控制中大脑行为的无限水平最佳反馈控制(OFC)模型和尖峰点处理模型。 OFC模型会在CLDA期间推断用户的运动意图,这一过程称为意图估计。 OFC还用于设计自主和动态辅助训练技术。点处理模型允许对每个尖峰事件进行神经处理,控制和解码器自适应,并且比当前的解码器更快的时间尺度。与当前的CLDA方法不同,它还可以实现基于动态尖峰事件的参数自适应,而当前的CLDA方法在慢得多的自适应时间尺度上使用基于批处理的自适应。我们在非人类灵长类动物中进行了数十天的闭环实验,以分离这些新型CLDA成分的作用。与目前的意图估计技术相比,OFC意图估计改善了BMI性能。 OFC辅助培训使受试者能够始终如一地实现熟练的控制。与基于批处理的方法相比,基于事件的自适应适应可以更快,更一致地实现性能收敛,并且对参数初始化具有鲁棒性。最后,该体系结构将控制范围扩展到了CLDA培训所不能完成的任务。这些结果对临床上可行的神经修复技术的发展具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号