首页> 美国卫生研究院文献>PLoS Computational Biology >Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
【2h】

Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI

机译:通过生成递归神经网络识别非线性动力系统及其在fMRI中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major tenet in theoretical neuroscience is that cognitive and behavioral processes are ultimately implemented in terms of the neural system dynamics. Accordingly, a major aim for the analysis of neurophysiological measurements should lie in the identification of the computational dynamics underlying task processing. Here we advance a state space model (SSM) based on generative piecewise-linear recurrent neural networks (PLRNN) to assess dynamics from neuroimaging data. In contrast to many other nonlinear time series models which have been proposed for reconstructing latent dynamics, our model is easily interpretable in neural terms, amenable to systematic dynamical systems analysis of the resulting set of equations, and can straightforwardly be transformed into an equivalent continuous-time dynamical system. The major contributions of this paper are the introduction of a new observation model suitable for functional magnetic resonance imaging (fMRI) coupled to the latent PLRNN, an efficient stepwise training procedure that forces the latent model to capture the ‘true’ underlying dynamics rather than just fitting (or predicting) the observations, and of an empirical measure based on the Kullback-Leibler divergence to evaluate from empirical time series how well this goal of approximating the underlying dynamics has been achieved. We validate and illustrate the power of our approach on simulated ‘ground-truth’ dynamical systems as well as on experimental fMRI time series, and demonstrate that the learnt dynamics harbors task-related nonlinear structure that a linear dynamical model fails to capture. Given that fMRI is one of the most common techniques for measuring brain activity non-invasively in human subjects, this approach may provide a novel step toward analyzing aberrant (nonlinear) dynamics for clinical assessment or neuroscientific research.
机译:理论神经科学的主要原则是,认知和行为过程最终是根据神经系统动力学来实现的。因此,神经生理学测量分析的主要目的应该在于确定任务处理基础上的计算动力学。在这里,我们基于生成的分段线性递归神经网络(PLRNN)提出状态空间模型(SSM),以评估来自神经影像数据的动力学。与为重构潜在动力学而提出的许多其他非线性时间序列模型相比,我们的模型很容易用神经学方法解释,适合于对所得方程组进行系统动力学系统分析,并且可以直接转换为等效的连续-时间动力系统。本文的主要贡献是引入了一种适用于功能性磁共振成像(fMRI)并结合潜在PLRNN的新观察模型,这是一种有效的逐步训练程序,可迫使该潜在模型捕捉“真实”的潜在动力学,而不是仅仅捕捉拟合(或预测)观测值,以及基于Kullback-Leibler散度的经验测度,以从经验时间序列中评估近似基础动力学的目标达到了多大程度。我们验证并说明了我们的方法在模拟“地面真相”动力学系统以及实验性fMRI时间序列上的功能,并证明了所学动力学包含了与任务相关的非线性结构,而线性动力学模型无法捕获该结构。鉴于功能磁共振成像是用于在人类受试者中无创测量大脑活动的最常见技术之一,这种方法可能为分析异常(非线性)动力学提供新的步骤,以进行临床评估或神经科学研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号