首页> 美国卫生研究院文献>Microsystems Nanoengineering >Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates
【2h】

Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates

机译:熔铸电子三维生物材料基质中细胞封闭的机器学习度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell’s operating length scales (10–100 μm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, “non-woven” vs. precision-stacked, “woven”). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing—metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.
机译:通过改变细胞在其上运行的生物材料底物的生物物理特性来调节细胞形状将提供潜在的形状驱动途径来控制细胞表型。但是,在单元的工作长度范围(10–100μm)上,存在具有可精确调整的多孔微结构和几何特征尺寸的三维(3D)基板的未探索尺寸尺度窗口。本文演示了使用熔体电写(MEW)技术制造这种高保真纤维基材的方法。这种先进的制造方法在生物学上具有度量框架的资格,该度量框架对各种基板尺寸和结构下的细胞限制状态进行建模和分类。使用成纤维细胞作为模型细胞系统,研究了粘附细胞的机械传感响应与可变基底尺寸(2D与3D)和多孔微体系结构(随机定向,“非织造”与精确堆叠,“织造”)的关系。 )。使用共聚焦荧光显微镜结合自动单细胞生物图像数据分析工作流程对单细胞限制状态进行建模,该方法提取整个细胞的定量指标以及所测得的亚细胞黏着斑蛋白特征。提取的多维数据集用于训练机器学习算法以对细胞形状表型进行分类。结果表明,细胞呈现出不同的限制状态,这是由规定的基材尺寸和多孔微体系结构强制实现的,与非织造纤维基材相比,机织MEW基材可促进最高的细胞形状均匀性。此处建立的技术平台是朝着集成增材制造发展迈出的重要一步,该平台可用于广泛的应用,包括基础机械生物学研究和组织构建体的3D生物打印,以产生符合单细胞水平的特定生物学设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号