首页> 美国卫生研究院文献>Nanomaterials >Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands
【2h】

Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

机译:基于静电喷雾沉积的氧化锰膜—从伪电容电荷存储材料到三维微电极集成体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, porous manganese oxide (MnOx) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F∙g−1 to 225 F∙g−1, with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn3O4 to the conducting layered birnessite MnO2. Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnOx/C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F∙cm−2 and stack capacitances as high as 7.4 F·cm−3, with maximal stack energy and power densities of 0.51 mWh·cm−3 and 28.3 mW·cm−3, respectively. The excellent areal capacitance of the MnOx-MEs is attributed to the pseudocapacitive MnOx as well as the three-dimensional architectural framework provided by the carbon micro-pillars.
机译:在这项研究中,通过静电喷涂(ESD)合成了多孔氧化锰(MnOx)薄膜,并在中性水性介质中作为伪电容电极材料进行了评估。非常有趣的是,基于ESD的电极的重量比电容在电化学循环中从72 F∙g -1 显着提高到225 F∙g -1 ,伴随着动力学和电导率的提高。电容和电阻率的变化归因于从尖晶石型菱锰矿Mn3O4到导电层水钠锰矿MnO2的部分电化学相变。此外,在1000次循环后,这些膜能够保留最大电容的88.4%。在验证锰氧化物薄膜在假电容应用中的可行性后,将薄膜集成到通过碳微机电系统(C-MEMS)创建的碳微柱上,以检查其作为潜在的微电极候选物的应用。在对称的两电极电池设置中,MnOx / C-MEMS微电极能够提供高达0.055 F·cm -2 的比电容和高达7.4 F·cm -3 ,最大堆能量和功率密度分别为0.51 mWh·cm -3 和28.3 mW·cm -3 。 MnOx-MEs优异的面电容归因于拟电容MnOx以及碳微柱提供的三维架构框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号