首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Electrochemical Biosensors - Sensor Principles and Architectures
【2h】

Electrochemical Biosensors - Sensor Principles and Architectures

机译:电化学生物传感器-传感器原理与架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification.In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.
机译:生物或生物化学过程的定量对于医学,生物和生物技术应用至关重要。然而,由于将电子设备直接连接到生物环境的复杂性,将生物信息转换成易于处理的电子信号是具有挑战性的。由于生物事件直接转换成电子信号,电化学生物传感器提供了一种有吸引力的手段来分析生物样品的含量。在过去的几十年中,已经开发了几种传感概念和相关设备。在这篇综述中,介绍了最常见的传统技术,例如循环伏安法,计时电流法,计时电位法,阻抗谱法和各种基于场效应晶体管的方法,以及精选的有前途的新颖方法,例如纳米线或基于磁性纳米粒子的生物传感。还总结了已证明可与电化学检测结合使用的其他测量技术,例如表面等离振子共振的电化学形式,光波导光模光谱法,椭圆偏振法,石英晶体微天平和扫描探针显微镜法。电化学传感器的总体性能通常取决于将传感元件连接到纳米尺度生物样品的表面结构。最常见的表面修饰技术,各种电化学转导机制以及识别受体分子的选择都会影响传感器的最终灵敏度。基于纳米技术的新方法,例如在脂质双层中使用工程化离子通道,将酶封装到囊泡,聚合物小体或聚电解质胶囊中,为信号放大提供了更多的可能性,特别是,这篇综述强调了精确控制的重要性在表面纳米结构,表面功能化和所选传感器换能器原理之间的微妙相互作用之间,以及互补的表征工具对解释和优化传感器响应的有用性方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号