首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >An Ultrasound-Based Liquid Pressure Measurement Method in Small Diameter Pipelines Considering the Installation and Temperature
【2h】

An Ultrasound-Based Liquid Pressure Measurement Method in Small Diameter Pipelines Considering the Installation and Temperature

机译:考虑安装和温度的小口径管道中基于超声波的液压测量方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.
机译:液压是检测和判断液压机​​构故障的关键参数,但传统的测量方法存在许多不足。本文提出了一种有效的非侵入性方法,该方法采用基于超声波的技术来测量小直径(小于15 mm)管道中的液体压力。所提出的方法基于这样的原理,即,在可纳液体中超声波的传输速度与液体压力相关。液体压力是利用超声波在不同压力下(0 Pa和X Pa)在液体中传播时间的变化来计算的。在这项研究中,时间差是通过电处理方法获得的,并通过高分辨率将其精确测量到纳秒级时间测量模块。由于安装差异和液体温度可能会影响测量精度,因此采用了一种称为自动增益控制(AGC)电路的特殊类型的电路和一种考虑液体温度的新的反向传播网络(BPN)模型来改善测量结果。通过利用时差,瞬态温度和液体压力之间的关系,最终获得相应的压力值。建立了实验压力测量平台,实验结果表明该方法具有良好的测量精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号