首页> 美国卫生研究院文献>Chemical Science >Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides
【2h】

Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides

机译:二维过渡金属二卤化物中的载流子注入和输运工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ever since two dimensional-transition (2D) metal dichalcogenides (TMDs) were discovered, their fascinating electronic properties have attracted a great deal of attention for harnessing them as critical components in novel electronic devices. 2D-TMDs endowed with an atomically thin structure, dangling bond-free nature, electrostatic integrity, and tunable wide band gaps enable low power consumption, low leakage, ambipolar transport, high mobility, superconductivity, robustness against short channel effects and tunneling in highly scaled devices. However, the progress of 2D-TMDs has been hampered by severe charge transport issues arising from undesired phenomena occurring at the surfaces and interfaces. Therefore, this review provides three distinct engineering strategies embodied with distinct innovative approaches to optimize both carrier injection and transport. First, contact engineering involves 2D-metal contacts and tunneling interlayers to overcome metal-induced interface states and the Fermi level pinning effect caused by low vacancy energy formation. Second, dielectric engineering covers high-k dielectrics, ionic liquids or 2D-insulators to screen scattering centers caused by carrier traps, imperfections and rough substrates, to finely tune the Fermi level across the band gap, and to provide dangling bond-free media. Third, material engineering focuses on charge transfer via substitutional, chemical and plasma doping to precisely modulate the carrier concentration and to passivate defects while preserving material integrity. Finally, we provide an outlook of the conceptual and technical achievements in 2D-TMDs to give a prospective view of the future development of highly scaled nanoelectronic devices.
机译:自从发现二维跃迁(2D)金属二氢二硫化物(TMD)以来,其迷人的电子特性就将其用作新型电子设备中的关键组件已引起了广泛的关注。 2D-TMD具有原子薄的结构,悬空的无键性质,静电完整性和可调节的宽带隙,可实现低功耗,低泄漏,双极性传输,高迁移率,超导性,抗短沟道效应的鲁棒性和高比例隧穿设备。然而,由于在表面和界面处发生不希望有的现象而引起的严重的电荷传输问题阻碍了2D-TMD的发展。因此,本综述提供了三种不同的工程策略,这些策略采用独特的创新方法来优化载流子注入和运输。首先,接触工程涉及2D金属接触和隧穿夹层,以克服金属引起的界面态和由低空位能量形成引起的费米能级钉扎效应。其次,介电工程覆盖高k电介质,离子液体或2D绝缘体,以筛选由载流子陷阱,缺陷和粗糙的基底引起的散射中心,以精细地调节整个带隙的费米能级,并提供悬空的无键介质。第三,材料工程专注于通过替代,化学和等离子体掺杂进行电荷转移,以精确调节载流子浓度并钝化缺陷,同时保持材料完整性。最后,我们对2D-TMD的概念和技术成就进行了展望,以展望未来大规模纳米电子器件的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号