首页> 美国卫生研究院文献>Brain Plasticity >Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis
【2h】

Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis

机译:线粒体代谢介导的成人神经发生调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and their impact on neurogenesis turns out to be an emerging research topic in the field. Mitochondrial metabolism is best known for energy production but it contains a great deal more. Mitochondria are key players in a variety of cellular processes including ATP synthesis through functional coupling of the electron transport chain and oxidative phosphorylation, recycling of hydrogen carriers, biosynthesis of cellular building blocks, and generation of reactive oxygen species that can modulate signaling pathways in a redox-dependent fashion. In this review, I will discuss recent findings describing stage-specific modulations of mitochondrial metabolism within the adult NSC lineage, emphasizing its importance for NSC self-renewal, proliferation of neural stem and progenitor cells (NSPCs), cell fate decisions, and differentiation and maturation of newborn neurons. I will furthermore summarize the important role of mitochondrial dysfunction in tissue regeneration and ageing, suggesting it as a potential therapeutic target for regenerative medicine practice.
机译:放射状胶质样神经干细胞(NSCs)产生新神经元的终生是通过定型发展序列实现的,该序列需要精确的调控机制来防止干细胞池的衰竭或不受控制的生长。细胞代谢是阻碍成人神经发生研究的新事物,特定阶段的代谢程序及其对神经发生的影响已成为该领域新兴的研究课题。线粒体代谢最著名的是产生能量,但它还包含更多的能量。线粒体是各种细胞过程的关键参与者,包括通过电子传输链的功能性偶联和氧化磷酸化的ATP合成,氢载体的循环利用,细胞构件的生物合成以及可以调节氧化还原信号通路的活性氧种类的产生。依赖的时尚。在这篇综述中,我将讨论最近的发现,这些发现描述了成年NSC谱系中线粒体代谢的特定阶段调节,强调了其对NSC自我更新,神经干细胞和祖细胞(NSPC)增殖,细胞命运决定以及分化和分化的重要性。新生神经元的成熟。我将进一步总结线粒体功能障碍在组织再生和衰老中的重要作用,建议将其作为再生医学实践的潜在治疗靶点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号