首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach
【2h】

Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach

机译:在非均质核糖体流模型中最大化蛋白质翻译率:凸优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energy-consuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation–elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n + 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
机译:翻译是基因表达的重要阶段。在此阶段,称为核糖体的大分子沿着将氨基酸按特定顺序连接在一起的mRNA链移动,以生成功能蛋白。与许多生物医学学科有关的一个重要问题是如何最大程度地提高蛋白质产量。确实,翻译是细胞中最耗能的过程之一,很自然地可以认为进化决定了这个过程,从而使蛋白质的生产率最大化。如果确实如此,则可以通过解决适当的数学优化问题来估算翻译机的各种参数。在合成生物学的背景下,同样的问题也会出现,即重新工程化异源基因,以使其在宿主生物体中的翻译率最大化。我们考虑使用称为核糖体流动模型(RFM)的翻译-延伸计算模型来最大程度地提高蛋白质生产率。该模型使用一组n个一阶非线性常微分方程描述了核糖体沿长度为n的mRNA链的流动。它还包括n +1个阳性参数:进入mRNA链的核糖体起始率,以及沿着链位点的n个延伸率。我们表明,RFM中的稳态转换速率是其参数的严格凹函数。这意味着在合适的约束条件下最大化翻译率的问题总是允许采用唯一的解决方案,并且即使对于较大的n值,也可以使用高效算法来求解凸优化问题来确定该解决方案。此外,我们的分析表明,仅可基于ORF起始附近密码子的最佳起始速率和延伸率来计算最佳翻译速率。我们讨论了理论结果在合成生物学,分子进化和功能基因组学中的一些应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号