首页> 美国卫生研究院文献>Soft Robotics >Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
【2h】

Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

机译:数字变形翼:使用基于复合格子的蜂窝结构的主动翼成形概念

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
机译:我们描述了一种用于模块化和主动变形结构的离散和可逆装配的方法,该结构使用了用于机器人应用的模块化构件。这项工作解决的主要技术挑战是使用这种方法来设计和制造具有空间调整刚度的低密度,高度顺应的机器人结构。与构建顺应性机器人的更常规方法相比,此方法具有许多潜在优势。分立组件降低了制造复杂性,因为可以批量生产并连接相对简单的零件以制造复杂的结构。可以根据子零件的顺序和几何形状来调整全局机械性能,因为可以将局部刚度和密度独立设置为宽范围的值,并且可以在空间上变化。结构的固有模块化可以大大简化分析和仿真。可以通过经验测试对每种构造块类型的行为的简单分析模型进行校准,然后将其综合为完全兼容系统的高度准确且计算效率高的模型。作为案例研究,我们描述了执行连续翼展方向扭曲变形的模块化可逆组装机翼。它具有高性能的空气动力学特性,重量轻,易于制造和维修。机翼由离散的格子元素构成,其中构件的几何和机械属性决定机翼的整体机械性能。我们描述了数字化变形机翼的机械设计和结构性能,包括它们与风洞试验的关系,这些试验表明与常规刚性副翼系统相比,能够提高侧倾效率。在这里,我们集中于描述设计,建模和构造的方法,将其作为需要非常轻便,可调和主动变形结构的机器人技术的通用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号